Source Code
Overview
ETH Balance
0 ETH
ETH Value
$0.00View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Cross-Chain Transactions
Loading...
Loading
Contract Name:
XykCurve
Compiler Version
v0.8.20+commit.a1b79de6
Optimization Enabled:
Yes with 1000000 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.0;
import {FixedPointMathLib} from "solmate/utils/FixedPointMathLib.sol";
import {ICurve} from "./ICurve.sol";
import {CurveErrorCodes} from "./CurveErrorCodes.sol";
/**
* @author 0xacedia
* @notice Bonding curve logic for an x*y=k curve using virtual reserves.
* @dev The virtual token reserve is stored in `spotPrice` and the virtual nft reserve is stored in `delta`.
* An LP can modify the virtual reserves by changing the `spotPrice` (tokens) or `delta` (nfts).
*/
contract XykCurve is ICurve, CurveErrorCodes {
using FixedPointMathLib for uint256;
/**
* @dev See {ICurve-validateDelta}
*/
function validateDelta(uint128 /*delta*/ ) external pure override returns (bool) {
// all values are valid
return true;
}
/**
* @dev See {ICurve-validateSpotPrice}
*/
function validateSpotPrice(uint128 /*newSpotPrice*/ ) external pure override returns (bool) {
// all values are valid
return true;
}
/**
* @dev See {ICurve-getBuyInfo}
*/
function getBuyInfo(
uint128 spotPrice,
uint128 delta,
uint256 numItems,
uint256 feeMultiplier,
uint256 protocolFeeMultiplier
)
external
pure
override
returns (
Error error,
uint128 newSpotPrice,
uint128 newDelta,
uint256 inputValue,
uint256 tradeFee,
uint256 protocolFee
)
{
if (numItems == 0) {
return (Error.INVALID_NUMITEMS, 0, 0, 0, 0, 0);
}
// Get the pair's virtual nft and token reserves
uint256 nftBalance = delta;
// If numItems is too large, we will get a divide by zero error
if (numItems >= nftBalance) {
return (Error.INVALID_NUMITEMS, 0, 0, 0, 0, 0);
}
// Calculate new nft balance
uint256 newNftBalance;
unchecked {
newNftBalance = nftBalance - numItems;
}
// Calculate the amount to send in. spotPrice is the virtual reserve.
uint256 inputValueWithoutFee = (numItems * spotPrice) / newNftBalance;
// Add the fees to the amount to send in
protocolFee = inputValueWithoutFee.mulWadUp(protocolFeeMultiplier);
tradeFee = inputValueWithoutFee.mulWadUp(feeMultiplier);
inputValue = inputValueWithoutFee + tradeFee + protocolFee;
// Set the new virtual reserves
uint256 newSpotPrice_ = spotPrice + inputValueWithoutFee;
if (newSpotPrice_ > type(uint128).max) {
return (Error.SPOT_PRICE_OVERFLOW, 0, 0, 0, 0, 0);
}
newSpotPrice = uint128(newSpotPrice_); // token reserve
newDelta = uint128(newNftBalance); // nft reserve
// If we got all the way here, no math errors happened
error = Error.OK;
}
/**
* @dev See {ICurve-getSellInfo}
*/
function getSellInfo(
uint128 spotPrice,
uint128 delta,
uint256 numItems,
uint256 feeMultiplier,
uint256 protocolFeeMultiplier
)
external
pure
override
returns (
Error error,
uint128 newSpotPrice,
uint128 newDelta,
uint256 outputValue,
uint256 tradeFee,
uint256 protocolFee
)
{
if (numItems == 0) {
return (Error.INVALID_NUMITEMS, 0, 0, 0, 0, 0);
}
// Get the pair's virtual nft and eth/erc20 balance
uint256 tokenBalance = spotPrice;
uint256 nftBalance = delta;
// Return early if new nft balance is too high
uint256 newBalance = nftBalance + numItems;
if (newBalance > type(uint128).max) {
return (Error.DELTA_OVERFLOW, 0, 0, 0, 0, 0);
}
// Calculate the amount to send out
uint256 outputValueWithoutFee = (numItems * tokenBalance) / newBalance;
// Subtract fees from amount to send out
protocolFee = outputValueWithoutFee.mulWadUp(protocolFeeMultiplier);
tradeFee = outputValueWithoutFee.mulWadUp(feeMultiplier);
outputValue = outputValueWithoutFee - tradeFee - protocolFee;
// Set new nft balance
newDelta = uint128(newBalance);
// Set the new virtual reserves
newSpotPrice = uint128(spotPrice - outputValueWithoutFee); // token reserve
// If we got all the way here, no math errors happened
error = Error.OK;
}
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol)
library FixedPointMathLib {
/*//////////////////////////////////////////////////////////////
SIMPLIFIED FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
uint256 internal constant MAX_UINT256 = 2**256 - 1;
uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
}
function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
}
function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
}
function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
}
/*//////////////////////////////////////////////////////////////
LOW LEVEL FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
function mulDivDown(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
revert(0, 0)
}
// Divide x * y by the denominator.
z := div(mul(x, y), denominator)
}
}
function mulDivUp(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
revert(0, 0)
}
// If x * y modulo the denominator is strictly greater than 0,
// 1 is added to round up the division of x * y by the denominator.
z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator))
}
}
function rpow(
uint256 x,
uint256 n,
uint256 scalar
) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
switch x
case 0 {
switch n
case 0 {
// 0 ** 0 = 1
z := scalar
}
default {
// 0 ** n = 0
z := 0
}
}
default {
switch mod(n, 2)
case 0 {
// If n is even, store scalar in z for now.
z := scalar
}
default {
// If n is odd, store x in z for now.
z := x
}
// Shifting right by 1 is like dividing by 2.
let half := shr(1, scalar)
for {
// Shift n right by 1 before looping to halve it.
n := shr(1, n)
} n {
// Shift n right by 1 each iteration to halve it.
n := shr(1, n)
} {
// Revert immediately if x ** 2 would overflow.
// Equivalent to iszero(eq(div(xx, x), x)) here.
if shr(128, x) {
revert(0, 0)
}
// Store x squared.
let xx := mul(x, x)
// Round to the nearest number.
let xxRound := add(xx, half)
// Revert if xx + half overflowed.
if lt(xxRound, xx) {
revert(0, 0)
}
// Set x to scaled xxRound.
x := div(xxRound, scalar)
// If n is even:
if mod(n, 2) {
// Compute z * x.
let zx := mul(z, x)
// If z * x overflowed:
if iszero(eq(div(zx, x), z)) {
// Revert if x is non-zero.
if iszero(iszero(x)) {
revert(0, 0)
}
}
// Round to the nearest number.
let zxRound := add(zx, half)
// Revert if zx + half overflowed.
if lt(zxRound, zx) {
revert(0, 0)
}
// Return properly scaled zxRound.
z := div(zxRound, scalar)
}
}
}
}
}
/*//////////////////////////////////////////////////////////////
GENERAL NUMBER UTILITIES
//////////////////////////////////////////////////////////////*/
function sqrt(uint256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
let y := x // We start y at x, which will help us make our initial estimate.
z := 181 // The "correct" value is 1, but this saves a multiplication later.
// This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
// start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
// We check y >= 2^(k + 8) but shift right by k bits
// each branch to ensure that if x >= 256, then y >= 256.
if iszero(lt(y, 0x10000000000000000000000000000000000)) {
y := shr(128, y)
z := shl(64, z)
}
if iszero(lt(y, 0x1000000000000000000)) {
y := shr(64, y)
z := shl(32, z)
}
if iszero(lt(y, 0x10000000000)) {
y := shr(32, y)
z := shl(16, z)
}
if iszero(lt(y, 0x1000000)) {
y := shr(16, y)
z := shl(8, z)
}
// Goal was to get z*z*y within a small factor of x. More iterations could
// get y in a tighter range. Currently, we will have y in [256, 256*2^16).
// We ensured y >= 256 so that the relative difference between y and y+1 is small.
// That's not possible if x < 256 but we can just verify those cases exhaustively.
// Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
// Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
// Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
// For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
// (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
// Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
// sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
// There is no overflow risk here since y < 2^136 after the first branch above.
z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
// Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
// If x+1 is a perfect square, the Babylonian method cycles between
// floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
// See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
// Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
// If you don't care whether the floor or ceil square root is returned, you can remove this statement.
z := sub(z, lt(div(x, z), z))
}
}
function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Mod x by y. Note this will return
// 0 instead of reverting if y is zero.
z := mod(x, y)
}
}
function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
// Divide x by y. Note this will return
// 0 instead of reverting if y is zero.
r := div(x, y)
}
}
function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Add 1 to x * y if x % y > 0. Note this will
// return 0 instead of reverting if y is zero.
z := add(gt(mod(x, y), 0), div(x, y))
}
}
}// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.0;
import {CurveErrorCodes} from "./CurveErrorCodes.sol";
interface ICurve {
/**
* @notice Validates if a delta value is valid for the curve. The criteria for
* validity can be different for each type of curve, for instance ExponentialCurve
* requires delta to be greater than 1.
* @param delta The delta value to be validated
* @return valid True if delta is valid, false otherwise
*/
function validateDelta(uint128 delta) external pure returns (bool valid);
/**
* @notice Validates if a new spot price is valid for the curve. Spot price is generally assumed to be the immediate sell price of 1 NFT to the pool, in units of the pool's paired token.
* @param newSpotPrice The new spot price to be set
* @return valid True if the new spot price is valid, false otherwise
*/
function validateSpotPrice(uint128 newSpotPrice) external view returns (bool valid);
/**
* @notice Given the current state of the pair and the trade, computes how much the user
* should pay to purchase an NFT from the pair, the new spot price, and other values.
* @param spotPrice The current selling spot price of the pair, in tokens
* @param delta The delta parameter of the pair, what it means depends on the curve
* @param numItems The number of NFTs the user is buying from the pair
* @param feeMultiplier Determines how much fee the LP takes from this trade, 18 decimals
* @param protocolFeeMultiplier Determines how much fee the protocol takes from this trade, 18 decimals
* @return error Any math calculation errors, only Error.OK means the returned values are valid
* @return newSpotPrice The updated selling spot price, in tokens
* @return newDelta The updated delta, used to parameterize the bonding curve
* @return inputValue The amount that the user should pay, in tokens
* @return tradeFee The amount that is sent to the trade fee recipient
* @return protocolFee The amount of fee to send to the protocol, in tokens
*/
function getBuyInfo(
uint128 spotPrice,
uint128 delta,
uint256 numItems,
uint256 feeMultiplier,
uint256 protocolFeeMultiplier
)
external
view
returns (
CurveErrorCodes.Error error,
uint128 newSpotPrice,
uint128 newDelta,
uint256 inputValue,
uint256 tradeFee,
uint256 protocolFee
);
/**
* @notice Given the current state of the pair and the trade, computes how much the user
* should receive when selling NFTs to the pair, the new spot price, and other values.
* @param spotPrice The current selling spot price of the pair, in tokens
* @param delta The delta parameter of the pair, what it means depends on the curve
* @param numItems The number of NFTs the user is selling to the pair
* @param feeMultiplier Determines how much fee the LP takes from this trade, 18 decimals
* @param protocolFeeMultiplier Determines how much fee the protocol takes from this trade, 18 decimals
* @return error Any math calculation errors, only Error.OK means the returned values are valid
* @return newSpotPrice The updated selling spot price, in tokens
* @return newDelta The updated delta, used to parameterize the bonding curve
* @return outputValue The amount that the user should receive, in tokens
* @return tradeFee The amount that is sent to the trade fee recipient
* @return protocolFee The amount of fee to send to the protocol, in tokens
*/
function getSellInfo(
uint128 spotPrice,
uint128 delta,
uint256 numItems,
uint256 feeMultiplier,
uint256 protocolFeeMultiplier
)
external
view
returns (
CurveErrorCodes.Error error,
uint128 newSpotPrice,
uint128 newDelta,
uint256 outputValue,
uint256 tradeFee,
uint256 protocolFee
);
}// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.0;
contract CurveErrorCodes {
enum Error {
OK, // No error
INVALID_NUMITEMS, // The numItem value is 0
SPOT_PRICE_OVERFLOW, // The updated spot price doesn't fit into 128 bits
DELTA_OVERFLOW, // The updated delta doesn't fit into 128 bits
SPOT_PRICE_UNDERFLOW // The updated spot price goes too low
}
}{
"remappings": [
"@manifoldxyz/=lib/",
"manifoldxyz/=lib/royalty-registry-solidity/contracts/",
"@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
"@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
"create3-factory/=lib/create3-factory/src/",
"solmate/=lib/solmate/src/",
"@prb/math/=lib/prb-math/src/",
"clones-with-immutable-args/=lib/clones-with-immutable-args/src/",
"ds-test/=lib/clones-with-immutable-args/lib/ds-test/src/",
"forge-std/=lib/forge-std/src/",
"solady/=lib/solady/src/",
"nitro-contracts/=lib/nitro-contracts/"
],
"optimizer": {
"enabled": true,
"runs": 1000000
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "paris",
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"uint128","name":"spotPrice","type":"uint128"},{"internalType":"uint128","name":"delta","type":"uint128"},{"internalType":"uint256","name":"numItems","type":"uint256"},{"internalType":"uint256","name":"feeMultiplier","type":"uint256"},{"internalType":"uint256","name":"protocolFeeMultiplier","type":"uint256"}],"name":"getBuyInfo","outputs":[{"internalType":"enum CurveErrorCodes.Error","name":"error","type":"uint8"},{"internalType":"uint128","name":"newSpotPrice","type":"uint128"},{"internalType":"uint128","name":"newDelta","type":"uint128"},{"internalType":"uint256","name":"inputValue","type":"uint256"},{"internalType":"uint256","name":"tradeFee","type":"uint256"},{"internalType":"uint256","name":"protocolFee","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint128","name":"spotPrice","type":"uint128"},{"internalType":"uint128","name":"delta","type":"uint128"},{"internalType":"uint256","name":"numItems","type":"uint256"},{"internalType":"uint256","name":"feeMultiplier","type":"uint256"},{"internalType":"uint256","name":"protocolFeeMultiplier","type":"uint256"}],"name":"getSellInfo","outputs":[{"internalType":"enum CurveErrorCodes.Error","name":"error","type":"uint8"},{"internalType":"uint128","name":"newSpotPrice","type":"uint128"},{"internalType":"uint128","name":"newDelta","type":"uint128"},{"internalType":"uint256","name":"outputValue","type":"uint256"},{"internalType":"uint256","name":"tradeFee","type":"uint256"},{"internalType":"uint256","name":"protocolFee","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint128","name":"","type":"uint128"}],"name":"validateDelta","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint128","name":"","type":"uint128"}],"name":"validateSpotPrice","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"}]Contract Creation Code
608060405234801561001057600080fd5b5061052e806100206000396000f3fe608060405234801561001057600080fd5b506004361061004c5760003560e01c8063097cc63d146100515780630ae67ccc1461007f5780637ca542ac146100a3578063a1bbb2e81461007f575b600080fd5b61006461005f366004610375565b6100b6565b604051610076969594939291906103c2565b60405180910390f35b61009361008d366004610436565b50600190565b6040519015158152602001610076565b6100646100b1366004610375565b6101bb565b600080600080600080886000036100df57506001945060009350839250829150819050806101ae565b6fffffffffffffffffffffffffffffffff808c16908b1660006101028c83610480565b90506fffffffffffffffffffffffffffffffff81111561013a57600360008060008060009850985098509850985098505050506101ae565b600081610147858f610493565b61015191906104aa565b905061015d818c6102ee565b9450610169818d6102ee565b95508461017687836104e5565b61018091906104e5565b9650819750808f6fffffffffffffffffffffffffffffffff166101a391906104e5565b985060009950505050505b9550955095509550955095565b600080600080600080886000036101e457506001945060009350839250829150819050806101ae565b6fffffffffffffffffffffffffffffffff8a16808a1061021a5760016000806000806000965096509650965096509650506101ae565b60008a820390506000818e6fffffffffffffffffffffffffffffffff168d6102429190610493565b61024c91906104aa565b9050610258818b6102ee565b9350610264818c6102ee565b9450836102718683610480565b61027b9190610480565b95506000818f6fffffffffffffffffffffffffffffffff1661029d9190610480565b90506fffffffffffffffffffffffffffffffff8111156102d65760026000806000806000995099509950995099509950505050506101ae565b60009950975090955050509550955095509550955095565b60006103038383670de0b6b3a764000061030c565b90505b92915050565b6000827fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff048411830215820261034157600080fd5b50910281810615159190040190565b80356fffffffffffffffffffffffffffffffff8116811461037057600080fd5b919050565b600080600080600060a0868803121561038d57600080fd5b61039686610350565b94506103a460208701610350565b94979496505050506040830135926060810135926080909101359150565b60c08101600588106103fd577f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b9681526fffffffffffffffffffffffffffffffff95861660208201529390941660408401526060830191909152608082015260a0015290565b60006020828403121561044857600080fd5b61030382610350565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b8082018082111561030657610306610451565b808202811582820484141761030657610306610451565b6000826104e0577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500490565b818103818111156103065761030661045156fea264697066735822122057b3a88a0294b63fba99296a66079bbcb2fa813915f1992dbeef25f67ccd44b764736f6c63430008140033
Deployed Bytecode
0x608060405234801561001057600080fd5b506004361061004c5760003560e01c8063097cc63d146100515780630ae67ccc1461007f5780637ca542ac146100a3578063a1bbb2e81461007f575b600080fd5b61006461005f366004610375565b6100b6565b604051610076969594939291906103c2565b60405180910390f35b61009361008d366004610436565b50600190565b6040519015158152602001610076565b6100646100b1366004610375565b6101bb565b600080600080600080886000036100df57506001945060009350839250829150819050806101ae565b6fffffffffffffffffffffffffffffffff808c16908b1660006101028c83610480565b90506fffffffffffffffffffffffffffffffff81111561013a57600360008060008060009850985098509850985098505050506101ae565b600081610147858f610493565b61015191906104aa565b905061015d818c6102ee565b9450610169818d6102ee565b95508461017687836104e5565b61018091906104e5565b9650819750808f6fffffffffffffffffffffffffffffffff166101a391906104e5565b985060009950505050505b9550955095509550955095565b600080600080600080886000036101e457506001945060009350839250829150819050806101ae565b6fffffffffffffffffffffffffffffffff8a16808a1061021a5760016000806000806000965096509650965096509650506101ae565b60008a820390506000818e6fffffffffffffffffffffffffffffffff168d6102429190610493565b61024c91906104aa565b9050610258818b6102ee565b9350610264818c6102ee565b9450836102718683610480565b61027b9190610480565b95506000818f6fffffffffffffffffffffffffffffffff1661029d9190610480565b90506fffffffffffffffffffffffffffffffff8111156102d65760026000806000806000995099509950995099509950505050506101ae565b60009950975090955050509550955095509550955095565b60006103038383670de0b6b3a764000061030c565b90505b92915050565b6000827fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff048411830215820261034157600080fd5b50910281810615159190040190565b80356fffffffffffffffffffffffffffffffff8116811461037057600080fd5b919050565b600080600080600060a0868803121561038d57600080fd5b61039686610350565b94506103a460208701610350565b94979496505050506040830135926060810135926080909101359150565b60c08101600588106103fd577f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b9681526fffffffffffffffffffffffffffffffff95861660208201529390941660408401526060830191909152608082015260a0015290565b60006020828403121561044857600080fd5b61030382610350565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b8082018082111561030657610306610451565b808202811582820484141761030657610306610451565b6000826104e0577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500490565b818103818111156103065761030661045156fea264697066735822122057b3a88a0294b63fba99296a66079bbcb2fa813915f1992dbeef25f67ccd44b764736f6c63430008140033
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in ETH
0
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.