Overview
ETH Balance
ETH Value
$0.00Latest 7 from a total of 7 transactions
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
| Checkpoint | 13487447 | 391 days ago | IN | 0 ETH | 0.00000168 | ||||
| Checkpoint | 13183577 | 398 days ago | IN | 0 ETH | 0.00000124 | ||||
| Checkpoint | 12883505 | 405 days ago | IN | 0 ETH | 0.00000254 | ||||
| Checkpoint | 12579700 | 412 days ago | IN | 0 ETH | 0.00000463 | ||||
| Checkpoint | 12278954 | 419 days ago | IN | 0 ETH | 0.00000281 | ||||
| Checkpoint | 11978341 | 426 days ago | IN | 0 ETH | 0.00000181 | ||||
| Set Relative Wei... | 11893072 | 428 days ago | IN | 0 ETH | 0.00000146 |
Latest 1 internal transaction
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 9562335 | 482 days ago | Contract Creation | 0 ETH |
Cross-Chain Transactions
Minimal Proxy Contract for 0x9ef366fb5a1589a1f4f2346cf630424985a54981
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { StakelessGauge } from "./StakelessGauge.sol";
import { IMinter } from "./interfaces/IMinter.sol";
import { IVotingEscrow } from "./interfaces/IVotingEscrow.sol";
import { IMerklGaugeConfig } from "./interfaces/IMerklGaugeConfig.sol";
import { DistributionParameters } from "./interfaces/merkl/DistributionParameters.sol";
import { IDistributionCreator } from "./interfaces/merkl/IDistributionCreator.sol";
contract MerklGauge is StakelessGauge {
using SafeERC20 for IERC20;
/* --------------------------------------------------------------
* Storage
-------------------------------------------------------------- */
uint256 public constant PERIOD = 7 days;
address public immutable veToken;
address public immutable token;
address public immutable merklGaugeConfig;
address public pool;
address public merklDistributionCreator;
/* --------------------------------------------------------------
* Constructor
-------------------------------------------------------------- */
constructor(
IMinter minter,
address _veToken,
address _merklGaugeConfig
) StakelessGauge(minter) {
veToken = _veToken;
token = IVotingEscrow(_veToken).token();
merklGaugeConfig = _merklGaugeConfig;
}
function initialize(
uint256 _relativeWeightCap,
address _merklDistributionCreator,
address _pool
) external {
merklDistributionCreator = _merklDistributionCreator;
pool = _pool;
__StakelessGauge_init(_relativeWeightCap);
IDistributionCreator(_merklDistributionCreator).acceptConditions();
}
/* --------------------------------------------------------------
* Utils
-------------------------------------------------------------- */
function _createMerklCampaign(uint256 _amount, address rewardToken) internal {
IMerklGaugeConfig.MerklConfig memory config = IMerklGaugeConfig(merklGaugeConfig).getConfig(address(this));
DistributionParameters memory params = DistributionParameters({
rewardId: bytes32(""),
uniV3Pool: pool,
rewardToken: rewardToken,
amount: _amount,
positionWrappers: IMerklGaugeConfig(merklGaugeConfig).getPositionWrappers(),
wrapperTypes: IMerklGaugeConfig(merklGaugeConfig).getWrapperTypes(),
propToken0: config.propToken0,
propToken1: config.propToken1,
propFees: config.propFees,
epochStart: uint32(block.timestamp),
numEpoch: uint32(168), // 1 week (7*24)
isOutOfRangeIncentivized: config.isOutOfRangeIncentivized,
boostedReward: 25000, // 2.5x boost
boostingAddress: veToken,
additionalData: bytes("")
});
IERC20(rewardToken).safeIncreaseAllowance(merklDistributionCreator, _amount);
IDistributionCreator(merklDistributionCreator).createDistribution(params);
}
function _postMintAction(uint256 _mintAmount) internal override {
_createMerklCampaign(_mintAmount, token);
}
function createMerklCampaign(uint256 _amount, address rewardToken) external nonReentrant {
require(msg.sender == _gaugeController.admin(), "!admin");
_createMerklCampaign(_amount, rewardToken);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.23;
interface IGaugeController {
function checkpoint_gauge(address gauge) external;
function gauge_relative_weight(address gauge, uint256 time) external view returns (uint256);
function voting_escrow() external view returns (address);
function token() external view returns (address);
function add_type(string calldata name, uint256 weight) external;
function change_type_weight(int128 typeId, uint256 weight) external;
function add_gauge(address gauge, int128 gaugeType) external;
function n_gauge_types() external view returns (int128);
function gauge_types(address gauge) external view returns (int128);
function admin() external view returns (address);
function gauge_exists(address gauge) external view returns (bool);
function time_weight(address gauge) external view returns (uint256);
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
interface IMerklGaugeConfig {
struct MerklConfig {
bool isSet;
uint32 propToken0;
uint32 propToken1;
uint32 propFees;
uint32 isOutOfRangeIncentivized;
}
function getPositionWrappers() external view returns (address[] memory);
function getWrapperTypes() external view returns (uint32[] memory);
function getConfig(address) external view returns (MerklConfig memory);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.23;
interface IMinter {
function mint(address) external;
function token() external returns (address);
function controller() external returns (address);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.23;
interface ITokenAdmin {
function token() external view returns (address);
function minter() external view returns (address);
function rate() external view returns (uint256);
function mint(address to_, uint256 amount_) external returns (bool);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;
interface IVotingEscrow {
struct LockedBalance {
int128 amount;
uint256 end;
}
function locked(address owner) external view returns (LockedBalance memory lock);
function deposit_for(address owner, uint256 value) external;
function token() external view returns (address);
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
struct DistributionParameters {
// ID of the reward (populated once created). This can be left as a null bytes32 when creating distributions
// on Merkl.
bytes32 rewardId;
// Address of the UniswapV3 pool that needs to be incentivized
address uniV3Pool;
// Address of the reward token for the incentives
address rewardToken;
// Amount of `rewardToken` to distribute across all the epochs
// Amount distributed per epoch is `amount/numEpoch`
uint256 amount;
// List of all position wrappers to consider or not for this contract. Some wrappers like Gamma or Arrakis
// are automatically detected and so there is no need to specify them here. Check out the docs to find out
// which need to be specified and which are not automatically detected.
address[] positionWrappers;
// Type (blacklist==3, whitelist==0, ...) encoded as a `uint32` for each wrapper in the list above. Mapping between
// wrapper types and their corresponding `uint32` value can be found in Angle Docs
uint32[] wrapperTypes;
// In the incentivization formula, how much of the fees should go to holders of token0
// in base 10**4
uint32 propToken0;
// Proportion for holding token1 (in base 10**4)
uint32 propToken1;
// Proportion for providing a useful liquidity (in base 10**4) that generates fees
uint32 propFees;
// Timestamp at which the incentivization should start. This is in the same units as `block.timestamp`.
uint32 epochStart;
// Amount of epochs for which incentivization should last. Epochs are expressed in hours here, so for a
// campaign of 1 week `numEpoch` should for instance be 168.
uint32 numEpoch;
// Whether out of range liquidity should still be incentivized or not
// This should be equal to 1 if out of range liquidity should still be incentivized
// and 0 otherwise.
uint32 isOutOfRangeIncentivized;
// How much more addresses with a maximum boost can get with respect to addresses
// which do not have a boost (in base 4). In the case of Curve where addresses get 2.5x more
// this would be 25000.
uint32 boostedReward;
// Address of the token which dictates who gets boosted rewards or not. This is optional
// and if the zero address is given no boost will be taken into account. In the case of Curve, this address
// would for instance be the veBoostProxy address, or in other cases the veToken address.
address boostingAddress;
// Additional data passed when distributing rewards. This parameter may be used in case
// the reward distribution script needs to look into other parameters beyond the ones above.
// In most cases, when creating a campaign on Merkl, you can leave this as an empty bytes.
bytes additionalData;
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
import { DistributionParameters } from "./DistributionParameters.sol";
interface IDistributionCreator {
function createDistribution(DistributionParameters memory newDistribution) external returns (uint256);
function acceptConditions() external;
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import { IMinter } from "./interfaces/IMinter.sol";
import { ITokenAdmin } from "./interfaces/ITokenAdmin.sol";
import { IGaugeController } from "./interfaces/IGaugeController.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
/**
* @title StakelessGauge
* @author Thruster
* @dev Abstract contract for managing emission rates and checkpoints without staking.
*/
abstract contract StakelessGauge is ReentrancyGuard {
uint256 public constant MAX_RELATIVE_WEIGHT_CAP = 1e18;
struct PendingRate {
uint256 rate;
uint256 epoch;
}
ITokenAdmin private immutable _tokenAdmin;
IMinter private immutable _minter;
IGaugeController internal immutable _gaugeController;
PendingRate private _pendingRate;
event Checkpoint(uint256 indexed periodTime, uint256 periodEmissions);
event RelativeWeightCapChanged(uint256 cap);
uint256 private _rate;
uint256 private _period;
uint256 private _emissions;
bool private _isKilled;
uint256 private _relativeWeightCap;
/**
* @dev Sets the initial state of the contract.
* @param minter The address of the minter contract.
*/
constructor(IMinter minter) {
_tokenAdmin = ITokenAdmin(minter.token());
_minter = minter;
_gaugeController = IGaugeController(minter.controller());
// Rate is iniality set here, it is updated while checkpointing the gauge.
_rate = _tokenAdmin.rate();
// Prevent initialisation of implementation contract
// Choice of `type(uint256).max` prevents implementation from being checkpointed
_period = type(uint256).max;
}
/**
* @dev Initializes the StakelessGauge with a relative weight cap.
* @param relativeWeightCap The maximum relative weight cap.
*/
// solhint-disable-next-line func-name-mixedcase
function __StakelessGauge_init(uint256 relativeWeightCap) internal {
require(_period == 0, "Already initialized");
_period = _currentPeriod();
_setRelativeWeightCap(relativeWeightCap);
}
/**
* @dev Creates a checkpoint for emissions calculation.
* Only callable by the gauge controller admin.
* @return A boolean value indicating whether the checkpoint was successful.
*/
function checkpoint() external payable nonReentrant returns (bool) {
require(msg.sender == _gaugeController.admin(), "!admin");
uint256 lastPeriod = _period;
uint256 currentPeriod = _currentPeriod();
if (lastPeriod < currentPeriod) {
_gaugeController.checkpoint_gauge(address(this));
uint256 rate = _rate;
uint256 newRate = _tokenAdmin.rate();
PendingRate memory pendingRate = _pendingRate;
if (_isKilled) {
rate = 0;
newRate = 0;
pendingRate.rate = 0;
}
// Write a pending rate update for the next period (next week)
if (rate != newRate && pendingRate.rate != newRate) {
_pendingRate.epoch = currentPeriod + 1;
_pendingRate.rate = newRate;
}
uint256 newEmissions = 0;
lastPeriod += 1;
for (uint256 i = lastPeriod; i < lastPeriod + 255; ++i) {
if (i > currentPeriod) break;
if (i == pendingRate.epoch) {
_rate = pendingRate.rate;
rate = pendingRate.rate;
}
uint256 periodTime = i * 1 weeks;
uint256 periodEmission = 0;
uint256 gaugeWeight = getCappedRelativeWeight(periodTime);
periodEmission = (gaugeWeight * rate * 1 weeks) / 10**18;
emit Checkpoint(periodTime, periodEmission);
newEmissions += periodEmission;
}
_period = currentPeriod;
_emissions += newEmissions;
if (newEmissions > 0 && !_isKilled) {
_minter.mint(address(this));
_postMintAction(newEmissions);
}
}
return true;
}
/**
* @dev Returns the current period based on the block timestamp.
* @return The current period as a uint256.
*/
function _currentPeriod() internal view returns (uint256) {
return (block.timestamp / 1 weeks) - 1;
}
/**
* @dev Abstract function to be implemented by the inheriting contract.
* @param mintAmount The amount minted during the checkpoint.
*/
function _postMintAction(uint256 mintAmount) internal virtual;
/**
* @dev A placeholder function for user checkpoint. Returns true.
* @return A boolean value, always true.
*/
function user_checkpoint(address) external pure returns (bool) {
return true;
}
/**
* @dev Gets the total emissions integrated for a user.
* @param user The address of the user.
* @return The total emissions for the user.
*/
function integrate_fraction(address user) external view returns (uint256) {
require(user == address(this), "Gauge can only mint for itself");
return _emissions;
}
/**
* @dev Checks if the gauge is killed.
* @return A boolean value indicating whether the gauge is killed.
*/
function is_killed() external view returns (bool) {
return _isKilled;
}
/**
* @dev Kills the gauge, stopping all emissions.
*/
function killGauge() external {
require(msg.sender == _gaugeController.admin(), "!admin");
_isKilled = true;
}
/**
* @dev Unkills the gauge, resuming emissions.
*/
function unkillGauge() external {
require(msg.sender == _gaugeController.admin(), "!admin");
_isKilled = false;
}
/**
* @dev Sets the relative weight cap for the gauge.
* @param relativeWeightCap The new relative weight cap.
*/
function setRelativeWeightCap(uint256 relativeWeightCap) external {
require(msg.sender == _gaugeController.admin(), "!admin");
_setRelativeWeightCap(relativeWeightCap);
}
/**
* @dev Internal function to set the relative weight cap.
* @param relativeWeightCap The new relative weight cap.
*/
function _setRelativeWeightCap(uint256 relativeWeightCap) internal {
require(relativeWeightCap <= MAX_RELATIVE_WEIGHT_CAP, "Relative weight cap exceeds allowed absolute maximum");
_relativeWeightCap = relativeWeightCap;
emit RelativeWeightCapChanged(relativeWeightCap);
}
/**
* @dev Gets the current relative weight cap.
* @return The current relative weight cap.
*/
function getRelativeWeightCap() external view returns (uint256) {
return _relativeWeightCap;
}
/**
* @dev Gets the capped relative weight at a specific time.
* @param time The time for which to get the relative weight.
* @return The capped relative weight.
*/
function getCappedRelativeWeight(uint256 time) public view returns (uint256) {
return Math.min(_gaugeController.gauge_relative_weight(address(this), time), _relativeWeightCap);
}
}{
"evmVersion": "paris",
"optimizer": {
"enabled": false,
"runs": 200
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"libraries": {}
}Contract ABI
API[{"inputs":[{"internalType":"contract IMinter","name":"minter","type":"address"},{"internalType":"address","name":"_veToken","type":"address"},{"internalType":"address","name":"_merklGaugeConfig","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"periodTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"periodEmissions","type":"uint256"}],"name":"Checkpoint","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"cap","type":"uint256"}],"name":"RelativeWeightCapChanged","type":"event"},{"inputs":[],"name":"MAX_RELATIVE_WEIGHT_CAP","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PERIOD","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"checkpoint","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"address","name":"rewardToken","type":"address"}],"name":"createMerklCampaign","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"time","type":"uint256"}],"name":"getCappedRelativeWeight","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRelativeWeightCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_relativeWeightCap","type":"uint256"},{"internalType":"address","name":"_merklDistributionCreator","type":"address"},{"internalType":"address","name":"_pool","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"integrate_fraction","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"is_killed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"killGauge","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"merklDistributionCreator","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"merklGaugeConfig","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pool","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"relativeWeightCap","type":"uint256"}],"name":"setRelativeWeightCap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unkillGauge","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"user_checkpoint","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"veToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]Net Worth in USD
Net Worth in ETH
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.