More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 73,148 transactions
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
| Redeem Due Inter... | 30239274 | 10 hrs ago | IN | 0 ETH | 0.00000014 | ||||
| Redeem Py To Tok... | 30239259 | 10 hrs ago | IN | 0 ETH | 0.00000014 | ||||
| 0xb7d75b8b | 30239192 | 10 hrs ago | IN | 0 ETH | 0.00000014 | ||||
| Redeem Due Inter... | 30239171 | 10 hrs ago | IN | 0 ETH | 0.00000016 | ||||
| Redeem Due Inter... | 30227397 | 16 hrs ago | IN | 0 ETH | 0.00000083 | ||||
| Redeem Due Inter... | 30225726 | 17 hrs ago | IN | 0 ETH | 0.00000027 | ||||
| Redeem Due Inter... | 30224140 | 18 hrs ago | IN | 0 ETH | 0.00000031 | ||||
| 0xb7d75b8b | 30220600 | 20 hrs ago | IN | 0 ETH | 0.0000001 | ||||
| Redeem Due Inter... | 30220589 | 20 hrs ago | IN | 0 ETH | 0.00000019 | ||||
| 0xb7d75b8b | 30218195 | 22 hrs ago | IN | 0 ETH | 0.0000001 | ||||
| Redeem Due Inter... | 30218183 | 22 hrs ago | IN | 0 ETH | 0.00000012 | ||||
| 0xb7d75b8b | 30185169 | 40 hrs ago | IN | 0 ETH | 0.00002271 | ||||
| Redeem Due Inter... | 30185158 | 40 hrs ago | IN | 0 ETH | 0.00003836 | ||||
| 0xb7d75b8b | 30181491 | 42 hrs ago | IN | 0 ETH | 0.00000046 | ||||
| Redeem Due Inter... | 30181460 | 42 hrs ago | IN | 0 ETH | 0.0000006 | ||||
| Redeem Due Inter... | 30179053 | 43 hrs ago | IN | 0 ETH | 0.00000043 | ||||
| Redeem Due Inter... | 30174973 | 46 hrs ago | IN | 0 ETH | 0.00000041 | ||||
| Redeem Due Inter... | 30174660 | 46 hrs ago | IN | 0 ETH | 0.00000044 | ||||
| Redeem Py To Sy | 30165827 | 2 days ago | IN | 0 ETH | 0.00000007 | ||||
| Redeem Py To Sy | 30165811 | 2 days ago | IN | 0 ETH | 0.00000006 | ||||
| 0xb7d75b8b | 30165740 | 2 days ago | IN | 0 ETH | 0.00000008 | ||||
| Redeem Py To Sy | 30124984 | 3 days ago | IN | 0 ETH | 0.00000007 | ||||
| Redeem Py To Sy | 30088135 | 3 days ago | IN | 0 ETH | 0.00000178 | ||||
| 0xb7d75b8b | 30088034 | 3 days ago | IN | 0 ETH | 0.00000125 | ||||
| Redeem Due Inter... | 30064601 | 4 days ago | IN | 0 ETH | 0.00000215 |
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Cross-Chain Transactions
Loading...
Loading
Contract Name:
PendleRouterV3
Compiler Version
v0.8.20+commit.a1b79de6
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.17;
import "@openzeppelin/contracts/proxy/Proxy.sol";
import "../interfaces/IPAllActionV3.sol";
import "../interfaces/IDiamondLoupe.sol";
import "../interfaces/IDiamondCut.sol";
import "../interfaces/Blast/IBlast.sol";
// solhint-disable no-empty-blocks
contract PendleRouterV3 is Proxy, IDiamondLoupe {
IBlast public constant BLAST = IBlast(0x4300000000000000000000000000000000000002);
address internal immutable ACTION_ADD_REMOVE_LIQ;
address internal immutable ACTION_SWAP_PT;
address internal immutable ACTION_SWAP_YT;
address internal immutable ACTION_MISC;
address internal immutable ACTION_CALLBACK;
event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);
constructor(
address _ACTION_ADD_REMOVE_LIQ,
address _ACTION_SWAP_PT,
address _ACTION_SWAP_YT,
address _ACTION_MISC,
address _ACTION_CALLBACK,
address _governor
) {
ACTION_ADD_REMOVE_LIQ = _ACTION_ADD_REMOVE_LIQ;
ACTION_SWAP_PT = _ACTION_SWAP_PT;
ACTION_SWAP_YT = _ACTION_SWAP_YT;
ACTION_MISC = _ACTION_MISC;
ACTION_CALLBACK = _ACTION_CALLBACK;
_emitEvents();
BLAST.configureClaimableGas();
BLAST.configureGovernor(_governor);
}
function _emitEvents() internal {
Facet[] memory facets_ = facets();
uint256 nFacets = facets_.length;
IDiamondCut.FacetCut[] memory cuts = new IDiamondCut.FacetCut[](nFacets);
for (uint256 i; i < nFacets; ) {
cuts[i].facetAddress = facets_[i].facetAddress;
cuts[i].action = IDiamondCut.FacetCutAction.Add;
cuts[i].functionSelectors = facets_[i].functionSelectors;
unchecked {
++i;
}
}
emit DiamondCut(cuts, address(0), "");
}
receive() external payable virtual override {}
/// @notice Gets all facet addresses and their four byte function selectors.
/// @return facets_ Facet
function facets() public view returns (Facet[] memory facets_) {
address[] memory facetAddresses_ = facetAddresses();
uint256 numFacets = facetAddresses_.length;
facets_ = new Facet[](numFacets);
for (uint256 i; i < numFacets; ) {
facets_[i].facetAddress = facetAddresses_[i];
facets_[i].functionSelectors = facetFunctionSelectors(facetAddresses_[i]);
unchecked {
i++;
}
}
}
function facetFunctionSelectors(address facet) public view returns (bytes4[] memory res) {
if (facet == address(this)) {
res = new bytes4[](4);
res[0] = 0x52ef6b2c; // facetAddresses
res[1] = 0x7a0ed627; // facets
res[2] = 0xadfca15e; // facetFunctionSelectors
res[3] = 0xcdffacc6; // facetAddress
}
if (facet == ACTION_ADD_REMOVE_LIQ) {
res = new bytes4[](12);
res[0] = 0x12599ac6; // addLiquiditySingleToken
res[1] = 0x2756ce06; // addLiquidityDualTokenAndPt
res[2] = 0x3dbe1c55; // addLiquiditySingleTokenKeepYt
res[3] = 0x4e390267; // addLiquiditySinglePt
res[4] = 0x58bda475; // addLiquiditySingleSy
res[5] = 0x60da0860; // removeLiquiditySingleToken
res[6] = 0x6b77ac9e; // removeLiquiditySinglePt
res[7] = 0x844384aa; // addLiquiditySingleSyKeepYt
res[8] = 0x97ee279e; // addLiquidityDualSyAndPt
res[9] = 0xb00f09d7; // removeLiquidityDualTokenAndPt
res[10] = 0xb7d75b8b; // removeLiquidityDualSyAndPt
res[11] = 0xd13b4fdc; // removeLiquiditySingleSy
}
if (facet == ACTION_SWAP_YT) {
res = new bytes4[](6);
res[0] = 0x05eb5327; // swapExactYtForToken
res[1] = 0x448b9b95; // swapExactYtForPt
res[2] = 0x7b8b4b95; // swapExactSyForYt
res[3] = 0x80c4d566; // swapExactYtForSy
res[4] = 0xc861a898; // swapExactPtForYt
res[5] = 0xed48907e; // swapExactTokenForYt
}
if (facet == ACTION_SWAP_PT) {
res = new bytes4[](4);
res[0] = 0x2a50917c; // swapExactSyForPt
res[1] = 0x3346d3a3; // swapExactPtForSy
res[2] = 0x594a88cc; // swapExactPtForToken
res[3] = 0xc81f847a; // swapExactTokenForPt
}
if (facet == ACTION_CALLBACK) {
res = new bytes4[](2);
res[0] = 0xeb3a7d47; // limitRouterCallback
res[1] = 0xfa483e72; // swapCallback
}
if (facet == ACTION_MISC) {
res = new bytes4[](12);
res[0] = 0x1a8631b2; // mintPyFromSy
res[1] = 0x2d8f9d8d; // boostMarkets
res[2] = 0x2e071dc6; // mintSyFromToken
res[3] = 0x339748cb; // redeemPyToSy
res[4] = 0x339a5572; // redeemSyToToken
res[5] = 0x47f1de22; // redeemPyToToken
res[6] = 0x5d3e105c; // swapTokenToToken
res[7] = 0x60fc8466; // multicall
res[8] = 0xa89eba4a; // swapTokenToTokenViaSy
res[9] = 0xbd61951d; // simulate
res[10] = 0xd0f42385; // mintPyFromToken
res[11] = 0xf7e375e8; // redeemDueInterestAndRewards
}
}
function facetAddress(bytes4 sig) public view returns (address) {
if (sig < 0x6b77ac9e) {
if (sig < 0x3dbe1c55) {
if (sig < 0x2d8f9d8d) {
if (sig < 0x1a8631b2) {
if (sig == 0x05eb5327) return ACTION_SWAP_YT; //swapExactYtForToken
if (sig == 0x12599ac6) return ACTION_ADD_REMOVE_LIQ; //addLiquiditySingleToken
} else {
if (sig == 0x1a8631b2) return ACTION_MISC; //mintPyFromSy
if (sig == 0x2756ce06) return ACTION_ADD_REMOVE_LIQ; //addLiquidityDualTokenAndPt
if (sig == 0x2a50917c) return ACTION_SWAP_PT; //swapExactSyForPt
}
} else {
if (sig < 0x3346d3a3) {
if (sig == 0x2d8f9d8d) return ACTION_MISC; //boostMarkets
if (sig == 0x2e071dc6) return ACTION_MISC; //mintSyFromToken
} else {
if (sig == 0x3346d3a3) return ACTION_SWAP_PT; //swapExactPtForSy
if (sig == 0x339748cb) return ACTION_MISC; //redeemPyToSy
if (sig == 0x339a5572) return ACTION_MISC; //redeemSyToToken
}
}
} else {
if (sig < 0x58bda475) {
if (sig < 0x47f1de22) {
if (sig == 0x3dbe1c55) return ACTION_ADD_REMOVE_LIQ; //addLiquiditySingleTokenKeepYt
if (sig == 0x448b9b95) return ACTION_SWAP_YT; //swapExactYtForPt
} else {
if (sig == 0x47f1de22) return ACTION_MISC; //redeemPyToToken
if (sig == 0x4e390267) return ACTION_ADD_REMOVE_LIQ; //addLiquiditySinglePt
if (sig == 0x52ef6b2c) return address(this); //facetAddresses
}
} else {
if (sig < 0x5d3e105c) {
if (sig == 0x58bda475) return ACTION_ADD_REMOVE_LIQ; //addLiquiditySingleSy
if (sig == 0x594a88cc) return ACTION_SWAP_PT; //swapExactPtForToken
} else {
if (sig == 0x5d3e105c) return ACTION_MISC; //swapTokenToToken
if (sig == 0x60da0860) return ACTION_ADD_REMOVE_LIQ; //removeLiquiditySingleToken
if (sig == 0x60fc8466) return ACTION_MISC; //multicall
}
}
}
} else {
if (sig < 0xbd61951d) {
if (sig < 0x97ee279e) {
if (sig < 0x7b8b4b95) {
if (sig == 0x6b77ac9e) return ACTION_ADD_REMOVE_LIQ; //removeLiquiditySinglePt
if (sig == 0x7a0ed627) return address(this); //facets
} else {
if (sig == 0x7b8b4b95) return ACTION_SWAP_YT; //swapExactSyForYt
if (sig == 0x80c4d566) return ACTION_SWAP_YT; //swapExactYtForSy
if (sig == 0x844384aa) return ACTION_ADD_REMOVE_LIQ; //addLiquiditySingleSyKeepYt
}
} else {
if (sig < 0xadfca15e) {
if (sig == 0x97ee279e) return ACTION_ADD_REMOVE_LIQ; //addLiquidityDualSyAndPt
if (sig == 0xa89eba4a) return ACTION_MISC; //swapTokenToTokenViaSy
} else {
if (sig == 0xadfca15e) return address(this); //facetFunctionSelectors
if (sig == 0xb00f09d7) return ACTION_ADD_REMOVE_LIQ; //removeLiquidityDualTokenAndPt
if (sig == 0xb7d75b8b) return ACTION_ADD_REMOVE_LIQ; //removeLiquidityDualSyAndPt
}
}
} else {
if (sig < 0xd13b4fdc) {
if (sig < 0xc861a898) {
if (sig == 0xbd61951d) return ACTION_MISC; //simulate
if (sig == 0xc81f847a) return ACTION_SWAP_PT; //swapExactTokenForPt
} else {
if (sig == 0xc861a898) return ACTION_SWAP_YT; //swapExactPtForYt
if (sig == 0xcdffacc6) return address(this); //facetAddress
if (sig == 0xd0f42385) return ACTION_MISC; //mintPyFromToken
}
} else {
if (sig < 0xed48907e) {
if (sig == 0xd13b4fdc) return ACTION_ADD_REMOVE_LIQ; //removeLiquiditySingleSy
if (sig == 0xeb3a7d47) return ACTION_CALLBACK; //limitRouterCallback
} else {
if (sig == 0xed48907e) return ACTION_SWAP_YT; //swapExactTokenForYt
if (sig == 0xf7e375e8) return ACTION_MISC; //redeemDueInterestAndRewards
if (sig == 0xfa483e72) return ACTION_CALLBACK; //swapCallback
}
}
}
}
revert Errors.RouterInvalidAction(sig);
// NUM_FUNC: 40 AVG:4.80 WORST_CASE:6 STOP_BRANCH:3
}
function facetAddresses() public view returns (address[] memory) {
address[] memory res = new address[](6);
res[0] = address(this);
res[1] = ACTION_ADD_REMOVE_LIQ;
res[2] = ACTION_SWAP_YT;
res[3] = ACTION_SWAP_PT;
res[4] = ACTION_CALLBACK;
res[5] = ACTION_MISC;
return res;
}
function _implementation() internal view override returns (address) {
return facetAddress(msg.sig);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)
pragma solidity ^0.8.0;
/**
* @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
* instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
* be specified by overriding the virtual {_implementation} function.
*
* Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
* different contract through the {_delegate} function.
*
* The success and return data of the delegated call will be returned back to the caller of the proxy.
*/
abstract contract Proxy {
/**
* @dev Delegates the current call to `implementation`.
*
* This function does not return to its internal call site, it will return directly to the external caller.
*/
function _delegate(address implementation) internal virtual {
assembly {
// Copy msg.data. We take full control of memory in this inline assembly
// block because it will not return to Solidity code. We overwrite the
// Solidity scratch pad at memory position 0.
calldatacopy(0, 0, calldatasize())
// Call the implementation.
// out and outsize are 0 because we don't know the size yet.
let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
// Copy the returned data.
returndatacopy(0, 0, returndatasize())
switch result
// delegatecall returns 0 on error.
case 0 {
revert(0, returndatasize())
}
default {
return(0, returndatasize())
}
}
}
/**
* @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
* and {_fallback} should delegate.
*/
function _implementation() internal view virtual returns (address);
/**
* @dev Delegates the current call to the address returned by `_implementation()`.
*
* This function does not return to its internal call site, it will return directly to the external caller.
*/
function _fallback() internal virtual {
_beforeFallback();
_delegate(_implementation());
}
/**
* @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
* function in the contract matches the call data.
*/
fallback() external payable virtual {
_fallback();
}
/**
* @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
* is empty.
*/
receive() external payable virtual {
_fallback();
}
/**
* @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
* call, or as part of the Solidity `fallback` or `receive` functions.
*
* If overridden should call `super._beforeFallback()`.
*/
function _beforeFallback() internal virtual {}
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "./IPActionAddRemoveLiqV3.sol";
import "./IPActionSwapPTV3.sol";
import "./IPActionSwapYTV3.sol";
import "./IPActionMiscV3.sol";
import "./IPActionCallbackV3.sol";
import "./IDiamondLoupe.sol";
interface IPAllActionV3 is
IPActionAddRemoveLiqV3,
IPActionSwapPTV3,
IPActionSwapYTV3,
IPActionMiscV3,
IPActionCallbackV3,
IDiamondLoupe
{}// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /******************************************************************************\ * Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen) * EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535 /******************************************************************************/ // A loupe is a small magnifying glass used to look at diamonds. // These functions look at diamonds interface IDiamondLoupe { /// These functions are expected to be called frequently /// by tools. struct Facet { address facetAddress; bytes4[] functionSelectors; } /// @notice Gets all facet addresses and their four byte function selectors. /// @return facets_ Facet function facets() external view returns (Facet[] memory facets_); /// @notice Gets all the function selectors supported by a specific facet. /// @param _facet The facet address. /// @return facetFunctionSelectors_ function facetFunctionSelectors(address _facet) external view returns (bytes4[] memory facetFunctionSelectors_); /// @notice Get all the facet addresses used by a diamond. /// @return facetAddresses_ function facetAddresses() external view returns (address[] memory facetAddresses_); /// @notice Gets the facet that supports the given selector. /// @dev If facet is not found return address(0). /// @param _functionSelector The function selector. /// @return facetAddress_ The facet address. function facetAddress(bytes4 _functionSelector) external view returns (address facetAddress_); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /******************************************************************************\ * Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen) * EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535 /******************************************************************************/ interface IDiamondCut { enum FacetCutAction { Add, Replace, Remove } // Add=0, Replace=1, Remove=2 struct FacetCut { address facetAddress; FacetCutAction action; bytes4[] functionSelectors; } /// @notice Add/replace/remove any number of functions and optionally execute /// a function with delegatecall /// @param _diamondCut Contains the facet addresses and function selectors /// @param _init The address of the contract or facet to execute _calldata /// @param _calldata A function call, including function selector and arguments /// _calldata is executed with delegatecall on _init function diamondCut(FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata) external; event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata); }
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.17;
interface IBlast {
function configureClaimableGas() external;
function configureGovernor(address governor) external;
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "../router/base/MarketApproxLib.sol";
import "./IPAllActionTypeV3.sol";
/*
*******************************************************************************************************************
*******************************************************************************************************************
* NOTICE *
* Refer to https://docs.pendle.finance/Developers/Contracts/PendleRouter for more information on
* TokenInput, TokenOutput, ApproxParams, LimitOrderData
* It's recommended to use Pendle's Hosted SDK to generate the params
*******************************************************************************************************************
*******************************************************************************************************************
*/
interface IPActionAddRemoveLiqV3 {
event AddLiquidityDualSyAndPt(
address indexed caller,
address indexed market,
address indexed receiver,
uint256 netSyUsed,
uint256 netPtUsed,
uint256 netLpOut
);
event AddLiquidityDualTokenAndPt(
address indexed caller,
address indexed market,
address indexed tokenIn,
address receiver,
uint256 netTokenUsed,
uint256 netPtUsed,
uint256 netLpOut,
uint256 netSyInterm
);
event AddLiquiditySinglePt(
address indexed caller,
address indexed market,
address indexed receiver,
uint256 netPtIn,
uint256 netLpOut
);
event AddLiquiditySingleSy(
address indexed caller,
address indexed market,
address indexed receiver,
uint256 netSyIn,
uint256 netLpOut
);
event AddLiquiditySingleToken(
address indexed caller,
address indexed market,
address indexed token,
address receiver,
uint256 netTokenIn,
uint256 netLpOut,
uint256 netSyInterm
);
event AddLiquiditySingleSyKeepYt(
address indexed caller,
address indexed market,
address indexed receiver,
uint256 netSyIn,
uint256 netSyMintPy,
uint256 netLpOut,
uint256 netYtOut
);
event AddLiquiditySingleTokenKeepYt(
address indexed caller,
address indexed market,
address indexed token,
address receiver,
uint256 netTokenIn,
uint256 netLpOut,
uint256 netYtOut,
uint256 netSyMintPy,
uint256 netSyInterm
);
event RemoveLiquidityDualSyAndPt(
address indexed caller,
address indexed market,
address indexed receiver,
uint256 netLpToRemove,
uint256 netPtOut,
uint256 netSyOut
);
event RemoveLiquidityDualTokenAndPt(
address indexed caller,
address indexed market,
address indexed tokenOut,
address receiver,
uint256 netLpToRemove,
uint256 netPtOut,
uint256 netTokenOut,
uint256 netSyInterm
);
event RemoveLiquiditySinglePt(
address indexed caller,
address indexed market,
address indexed receiver,
uint256 netLpToRemove,
uint256 netPtOut
);
event RemoveLiquiditySingleSy(
address indexed caller,
address indexed market,
address indexed receiver,
uint256 netLpToRemove,
uint256 netSyOut
);
event RemoveLiquiditySingleToken(
address indexed caller,
address indexed market,
address indexed token,
address receiver,
uint256 netLpToRemove,
uint256 netTokenOut,
uint256 netSyInterm
);
function addLiquidityDualTokenAndPt(
address receiver,
address market,
TokenInput calldata input,
uint256 netPtDesired,
uint256 minLpOut
) external payable returns (uint256 netLpOut, uint256 netPtUsed, uint256 netSyInterm);
function addLiquidityDualSyAndPt(
address receiver,
address market,
uint256 netSyDesired,
uint256 netPtDesired,
uint256 minLpOut
) external returns (uint256 netLpOut, uint256 netSyUsed, uint256 netPtUsed);
function addLiquiditySinglePt(
address receiver,
address market,
uint256 netPtIn,
uint256 minLpOut,
ApproxParams calldata guessPtSwapToSy,
LimitOrderData calldata limit
) external returns (uint256 netLpOut, uint256 netSyFee);
function addLiquiditySingleToken(
address receiver,
address market,
uint256 minLpOut,
ApproxParams calldata guessPtReceivedFromSy,
TokenInput calldata input,
LimitOrderData calldata limit
) external payable returns (uint256 netLpOut, uint256 netSyFee, uint256 netSyInterm);
function addLiquiditySingleSy(
address receiver,
address market,
uint256 netSyIn,
uint256 minLpOut,
ApproxParams calldata guessPtReceivedFromSy,
LimitOrderData calldata limit
) external returns (uint256 netLpOut, uint256 netSyFee);
function addLiquiditySingleTokenKeepYt(
address receiver,
address market,
uint256 minLpOut,
uint256 minYtOut,
TokenInput calldata input
) external payable returns (uint256 netLpOut, uint256 netYtOut, uint256 netSyMintPy, uint256 netSyInterm);
function addLiquiditySingleSyKeepYt(
address receiver,
address market,
uint256 netSyIn,
uint256 minLpOut,
uint256 minYtOut
) external returns (uint256 netLpOut, uint256 netYtOut, uint256 netSyMintPy);
function removeLiquidityDualTokenAndPt(
address receiver,
address market,
uint256 netLpToRemove,
TokenOutput calldata output,
uint256 minPtOut
) external returns (uint256 netTokenOut, uint256 netPtOut, uint256 netSyInterm);
function removeLiquidityDualSyAndPt(
address receiver,
address market,
uint256 netLpToRemove,
uint256 minSyOut,
uint256 minPtOut
) external returns (uint256 netSyOut, uint256 netPtOut);
function removeLiquiditySinglePt(
address receiver,
address market,
uint256 netLpToRemove,
uint256 minPtOut,
ApproxParams calldata guessPtReceivedFromSy,
LimitOrderData calldata limit
) external returns (uint256 netPtOut, uint256 netSyFee);
function removeLiquiditySingleToken(
address receiver,
address market,
uint256 netLpToRemove,
TokenOutput calldata output,
LimitOrderData calldata limit
) external returns (uint256 netTokenOut, uint256 netSyFee, uint256 netSyInterm);
function removeLiquiditySingleSy(
address receiver,
address market,
uint256 netLpToRemove,
uint256 minSyOut,
LimitOrderData calldata limit
) external returns (uint256 netSyOut, uint256 netSyFee);
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "../router/base/MarketApproxLib.sol";
import "./IPAllActionTypeV3.sol";
/*
*******************************************************************************************************************
*******************************************************************************************************************
* NOTICE *
* Refer to https://docs.pendle.finance/Developers/Contracts/PendleRouter for more information on
* TokenInput, TokenOutput, ApproxParams, LimitOrderData
* It's recommended to use Pendle's Hosted SDK to generate the params
*******************************************************************************************************************
*******************************************************************************************************************
*/
interface IPActionSwapPTV3 {
event SwapPtAndSy(
address indexed caller,
address indexed market,
address indexed receiver,
int256 netPtToAccount,
int256 netSyToAccount
);
event SwapPtAndToken(
address indexed caller,
address indexed market,
address indexed token,
address receiver,
int256 netPtToAccount,
int256 netTokenToAccount,
uint256 netSyInterm
);
function swapExactTokenForPt(
address receiver,
address market,
uint256 minPtOut,
ApproxParams calldata guessPtOut,
TokenInput calldata input,
LimitOrderData calldata limit
) external payable returns (uint256 netPtOut, uint256 netSyFee, uint256 netSyInterm);
function swapExactSyForPt(
address receiver,
address market,
uint256 exactSyIn,
uint256 minPtOut,
ApproxParams calldata guessPtOut,
LimitOrderData calldata limit
) external returns (uint256 netPtOut, uint256 netSyFee);
function swapExactPtForToken(
address receiver,
address market,
uint256 exactPtIn,
TokenOutput calldata output,
LimitOrderData calldata limit
) external returns (uint256 netTokenOut, uint256 netSyFee, uint256 netSyInterm);
function swapExactPtForSy(
address receiver,
address market,
uint256 exactPtIn,
uint256 minSyOut,
LimitOrderData calldata limit
) external returns (uint256 netSyOut, uint256 netSyFee);
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "../router/base/MarketApproxLib.sol";
import "./IPAllActionTypeV3.sol";
/*
*******************************************************************************************************************
*******************************************************************************************************************
* NOTICE *
* Refer to https://docs.pendle.finance/Developers/Contracts/PendleRouter for more information on
* TokenInput, TokenOutput, ApproxParams, LimitOrderData
* It's recommended to use Pendle's Hosted SDK to generate the params
*******************************************************************************************************************
*******************************************************************************************************************
*/
interface IPActionSwapYTV3 {
event SwapYtAndSy(
address indexed caller,
address indexed market,
address indexed receiver,
int256 netYtToAccount,
int256 netSyToAccount
);
event SwapYtAndToken(
address indexed caller,
address indexed market,
address indexed token,
address receiver,
int256 netYtToAccount,
int256 netTokenToAccount,
uint256 netSyInterm
);
event SwapPtAndYt(
address indexed caller,
address indexed market,
address indexed receiver,
int256 netPtToAccount,
int256 netYtToAccount
);
function swapExactTokenForYt(
address receiver,
address market,
uint256 minYtOut,
ApproxParams calldata guessYtOut,
TokenInput calldata input,
LimitOrderData calldata limit
) external payable returns (uint256 netYtOut, uint256 netSyFee, uint256 netSyInterm);
function swapExactSyForYt(
address receiver,
address market,
uint256 exactSyIn,
uint256 minYtOut,
ApproxParams calldata guessYtOut,
LimitOrderData calldata limit
) external returns (uint256 netYtOut, uint256 netSyFee);
function swapExactYtForToken(
address receiver,
address market,
uint256 exactYtIn,
TokenOutput calldata output,
LimitOrderData calldata limit
) external returns (uint256 netTokenOut, uint256 netSyFee, uint256 netSyInterm);
function swapExactYtForSy(
address receiver,
address market,
uint256 exactYtIn,
uint256 minSyOut,
LimitOrderData calldata limit
) external returns (uint256 netSyOut, uint256 netSyFee);
function swapExactPtForYt(
address receiver,
address market,
uint256 exactPtIn,
uint256 minYtOut,
ApproxParams calldata guessTotalPtToSwap
) external returns (uint256 netYtOut, uint256 netSyFee);
function swapExactYtForPt(
address receiver,
address market,
uint256 exactYtIn,
uint256 minPtOut,
ApproxParams calldata guessTotalPtFromSwap
) external returns (uint256 netPtOut, uint256 netSyFee);
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "../router/base/MarketApproxLib.sol";
import "./IPAllActionTypeV3.sol";
/*
*******************************************************************************************************************
*******************************************************************************************************************
* NOTICE *
* Refer to https://docs.pendle.finance/Developers/Contracts/PendleRouter for more information on
* TokenInput, TokenOutput, ApproxParams, LimitOrderData
* It's recommended to use Pendle's Hosted SDK to generate the params
*******************************************************************************************************************
*******************************************************************************************************************
*/
interface IPActionMiscV3 {
struct Call3 {
bool allowFailure;
bytes callData;
}
struct Result {
bool success;
bytes returnData;
}
event MintSyFromToken(
address indexed caller,
address indexed tokenIn,
address indexed SY,
address receiver,
uint256 netTokenIn,
uint256 netSyOut
);
event RedeemSyToToken(
address indexed caller,
address indexed tokenOut,
address indexed SY,
address receiver,
uint256 netSyIn,
uint256 netTokenOut
);
event MintPyFromSy(
address indexed caller,
address indexed receiver,
address indexed YT,
uint256 netSyIn,
uint256 netPyOut
);
event RedeemPyToSy(
address indexed caller,
address indexed receiver,
address indexed YT,
uint256 netPyIn,
uint256 netSyOut
);
event MintPyFromToken(
address indexed caller,
address indexed tokenIn,
address indexed YT,
address receiver,
uint256 netTokenIn,
uint256 netPyOut,
uint256 netSyInterm
);
event RedeemPyToToken(
address indexed caller,
address indexed tokenOut,
address indexed YT,
address receiver,
uint256 netPyIn,
uint256 netTokenOut,
uint256 netSyInterm
);
function mintSyFromToken(
address receiver,
address SY,
uint256 minSyOut,
TokenInput calldata input
) external payable returns (uint256 netSyOut);
function redeemSyToToken(
address receiver,
address SY,
uint256 netSyIn,
TokenOutput calldata output
) external returns (uint256 netTokenOut);
function mintPyFromToken(
address receiver,
address YT,
uint256 minPyOut,
TokenInput calldata input
) external payable returns (uint256 netPyOut, uint256 netSyInterm);
function redeemPyToToken(
address receiver,
address YT,
uint256 netPyIn,
TokenOutput calldata output
) external returns (uint256 netTokenOut, uint256 netSyInterm);
function mintPyFromSy(
address receiver,
address YT,
uint256 netSyIn,
uint256 minPyOut
) external returns (uint256 netPyOut);
function redeemPyToSy(
address receiver,
address YT,
uint256 netPyIn,
uint256 minSyOut
) external returns (uint256 netSyOut);
function redeemDueInterestAndRewards(
address user,
address[] calldata sys,
address[] calldata yts,
address[] calldata markets
) external;
function swapTokenToToken(
address receiver,
uint256 minTokenOut,
TokenInput calldata inp
) external payable returns (uint256 netTokenOut);
function swapTokenToTokenViaSy(
address receiver,
address SY,
TokenInput calldata input,
address tokenRedeemSy,
uint256 minTokenOut
) external payable returns (uint256 netTokenOut, uint256 netSyInterm);
function boostMarkets(address[] memory markets) external;
function multicall(Call3[] calldata calls) external payable returns (Result[] memory res);
function simulate(address target, bytes calldata data) external payable;
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "./IPMarketSwapCallback.sol";
import "./IPLimitRouter.sol";
interface IPActionCallbackV3 is IPMarketSwapCallback, IPLimitRouterCallback {}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "../../core/libraries/math/PMath.sol";
import "../../core/Market/MarketMathCore.sol";
struct ApproxParams {
uint256 guessMin;
uint256 guessMax;
uint256 guessOffchain; // pass 0 in to skip this variable
uint256 maxIteration; // every iteration, the diff between guessMin and guessMax will be divided by 2
uint256 eps; // the max eps between the returned result & the correct result, base 1e18. Normally this number will be set
// to 1e15 (1e18/1000 = 0.1%)
}
/// Further explanation of the eps. Take swapExactSyForPt for example. To calc the corresponding amount of Pt to swap out,
/// it's necessary to run an approximation algorithm, because by default there only exists the Pt to Sy formula
/// To approx, the 5 values above will have to be provided, and the approx process will run as follows:
/// mid = (guessMin + guessMax) / 2 // mid here is the current guess of the amount of Pt out
/// netSyNeed = calcSwapSyForExactPt(mid)
/// if (netSyNeed > exactSyIn) guessMax = mid - 1 // since the maximum Sy in can't exceed the exactSyIn
/// else guessMin = mid (1)
/// For the (1), since netSyNeed <= exactSyIn, the result might be usable. If the netSyNeed is within eps of
/// exactSyIn (ex eps=0.1% => we have used 99.9% the amount of Sy specified), mid will be chosen as the final guess result
/// for guessOffchain, this is to provide a shortcut to guessing. The offchain SDK can precalculate the exact result
/// before the tx is sent. When the tx reaches the contract, the guessOffchain will be checked first, and if it satisfies the
/// approximation, it will be used (and save all the guessing). It's expected that this shortcut will be used in most cases
/// except in cases that there is a trade in the same market right before the tx
library MarketApproxPtInLib {
using MarketMathCore for MarketState;
using PYIndexLib for PYIndex;
using PMath for uint256;
using PMath for int256;
using LogExpMath for int256;
/**
* @dev algorithm:
* - Bin search the amount of PT to swap in
* - Try swapping & get netSyOut
* - Stop when netSyOut greater & approx minSyOut
* - guess & approx is for netPtIn
*/
function approxSwapPtForExactSy(
MarketState memory market,
PYIndex index,
uint256 minSyOut,
uint256 blockTime,
ApproxParams memory approx
) internal pure returns (uint256, /*netPtIn*/ uint256, /*netSyOut*/ uint256 /*netSyFee*/) {
MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
if (approx.guessOffchain == 0) {
// no limit on min
approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(market, comp));
validateApprox(approx);
}
for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
uint256 guess = nextGuess(approx, iter);
(uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess);
if (netSyOut >= minSyOut) {
if (PMath.isAGreaterApproxB(netSyOut, minSyOut, approx.eps)) {
return (guess, netSyOut, netSyFee);
}
approx.guessMax = guess;
} else {
approx.guessMin = guess;
}
}
revert Errors.ApproxFail();
}
/**
* @dev algorithm:
* - Bin search the amount of PT to swap in
* - Flashswap the corresponding amount of SY out
* - Pair those amount with exactSyIn SY to tokenize into PT & YT
* - PT to repay the flashswap, YT transferred to user
* - Stop when the amount of SY to be pulled to tokenize PT to repay loan approx the exactSyIn
* - guess & approx is for netYtOut (also netPtIn)
*/
function approxSwapExactSyForYt(
MarketState memory market,
PYIndex index,
uint256 exactSyIn,
uint256 blockTime,
ApproxParams memory approx
) internal pure returns (uint256, /*netYtOut*/ uint256 /*netSyFee*/) {
MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
if (approx.guessOffchain == 0) {
approx.guessMin = PMath.max(approx.guessMin, index.syToAsset(exactSyIn));
approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(market, comp));
validateApprox(approx);
}
// at minimum we will flashswap exactSyIn since we have enough SY to payback the PT loan
for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
uint256 guess = nextGuess(approx, iter);
(uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess);
uint256 netSyToTokenizePt = index.assetToSyUp(guess);
// for sure netSyToTokenizePt >= netSyOut since we are swapping PT to SY
uint256 netSyToPull = netSyToTokenizePt - netSyOut;
if (netSyToPull <= exactSyIn) {
if (PMath.isASmallerApproxB(netSyToPull, exactSyIn, approx.eps)) {
return (guess, netSyFee);
}
approx.guessMin = guess;
} else {
approx.guessMax = guess - 1;
}
}
revert Errors.ApproxFail();
}
struct Args5 {
MarketState market;
PYIndex index;
uint256 totalPtIn;
uint256 netSyHolding;
uint256 blockTime;
ApproxParams approx;
}
/**
* @dev algorithm:
* - Bin search the amount of PT to swap to SY
* - Swap PT to SY
* - Pair the remaining PT with the SY to add liquidity
* - Stop when the ratio of PT / totalPt & SY / totalSy is approx
* - guess & approx is for netPtSwap
*/
function approxSwapPtToAddLiquidity(
MarketState memory _market,
PYIndex _index,
uint256 _totalPtIn,
uint256 _netSyHolding,
uint256 _blockTime,
ApproxParams memory approx
) internal pure returns (uint256, /*netPtSwap*/ uint256, /*netSyFromSwap*/ uint256 /*netSyFee*/) {
Args5 memory a = Args5(_market, _index, _totalPtIn, _netSyHolding, _blockTime, approx);
MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime);
if (approx.guessOffchain == 0) {
// no limit on min
approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(a.market, comp));
approx.guessMax = PMath.min(approx.guessMax, a.totalPtIn);
validateApprox(approx);
require(a.market.totalLp != 0, "no existing lp");
}
for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
uint256 guess = nextGuess(approx, iter);
(uint256 syNumerator, uint256 ptNumerator, uint256 netSyOut, uint256 netSyFee, ) = calcNumerators(
a.market,
a.index,
a.totalPtIn,
a.netSyHolding,
comp,
guess
);
if (PMath.isAApproxB(syNumerator, ptNumerator, approx.eps)) {
return (guess, netSyOut, netSyFee);
}
if (syNumerator <= ptNumerator) {
// needs more SY --> swap more PT
approx.guessMin = guess + 1;
} else {
// needs less SY --> swap less PT
approx.guessMax = guess - 1;
}
}
revert Errors.ApproxFail();
}
function calcNumerators(
MarketState memory market,
PYIndex index,
uint256 totalPtIn,
uint256 netSyHolding,
MarketPreCompute memory comp,
uint256 guess
)
internal
pure
returns (uint256 syNumerator, uint256 ptNumerator, uint256 netSyOut, uint256 netSyFee, uint256 netSyToReserve)
{
(netSyOut, netSyFee, netSyToReserve) = calcSyOut(market, comp, index, guess);
uint256 newTotalPt = uint256(market.totalPt) + guess;
uint256 newTotalSy = (uint256(market.totalSy) - netSyOut - netSyToReserve);
// it is desired that
// (netSyOut + netSyHolding) / newTotalSy = netPtRemaining / newTotalPt
// which is equivalent to
// (netSyOut + netSyHolding) * newTotalPt = netPtRemaining * newTotalSy
syNumerator = (netSyOut + netSyHolding) * newTotalPt;
ptNumerator = (totalPtIn - guess) * newTotalSy;
}
/**
* @dev algorithm:
* - Bin search the amount of PT to swap to SY
* - Flashswap the corresponding amount of SY out
* - Tokenize all the SY into PT + YT
* - PT to repay the flashswap, YT transferred to user
* - Stop when the additional amount of PT to pull to repay the loan approx the exactPtIn
* - guess & approx is for totalPtToSwap
*/
function approxSwapExactPtForYt(
MarketState memory market,
PYIndex index,
uint256 exactPtIn,
uint256 blockTime,
ApproxParams memory approx
) internal pure returns (uint256, /*netYtOut*/ uint256, /*totalPtToSwap*/ uint256 /*netSyFee*/) {
MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
if (approx.guessOffchain == 0) {
approx.guessMin = PMath.max(approx.guessMin, exactPtIn);
approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(market, comp));
validateApprox(approx);
}
for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
uint256 guess = nextGuess(approx, iter);
(uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess);
uint256 netAssetOut = index.syToAsset(netSyOut);
// guess >= netAssetOut since we are swapping PT to SY
uint256 netPtToPull = guess - netAssetOut;
if (netPtToPull <= exactPtIn) {
if (PMath.isASmallerApproxB(netPtToPull, exactPtIn, approx.eps)) {
return (netAssetOut, guess, netSyFee);
}
approx.guessMin = guess;
} else {
approx.guessMax = guess - 1;
}
}
revert Errors.ApproxFail();
}
////////////////////////////////////////////////////////////////////////////////
function calcSyOut(
MarketState memory market,
MarketPreCompute memory comp,
PYIndex index,
uint256 netPtIn
) internal pure returns (uint256 netSyOut, uint256 netSyFee, uint256 netSyToReserve) {
(int256 _netSyOut, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade(comp, index, -int256(netPtIn));
netSyOut = uint256(_netSyOut);
netSyFee = uint256(_netSyFee);
netSyToReserve = uint256(_netSyToReserve);
}
function nextGuess(ApproxParams memory approx, uint256 iter) internal pure returns (uint256) {
if (iter == 0 && approx.guessOffchain != 0) return approx.guessOffchain;
if (approx.guessMin <= approx.guessMax) return (approx.guessMin + approx.guessMax) / 2;
revert Errors.ApproxFail();
}
/// INTENDED TO BE CALLED BY WHEN GUESS.OFFCHAIN == 0 ONLY ///
function validateApprox(ApproxParams memory approx) internal pure {
if (approx.guessMin > approx.guessMax || approx.eps > PMath.ONE) {
revert Errors.ApproxParamsInvalid(approx.guessMin, approx.guessMax, approx.eps);
}
}
function calcMaxPtIn(MarketState memory market, MarketPreCompute memory comp) internal pure returns (uint256) {
uint256 low = 0;
uint256 hi = uint256(comp.totalAsset) - 1;
while (low != hi) {
uint256 mid = (low + hi + 1) / 2;
if (calcSlope(comp, market.totalPt, int256(mid)) < 0) hi = mid - 1;
else low = mid;
}
return low;
}
function calcSlope(MarketPreCompute memory comp, int256 totalPt, int256 ptToMarket) internal pure returns (int256) {
int256 diffAssetPtToMarket = comp.totalAsset - ptToMarket;
int256 sumPt = ptToMarket + totalPt;
require(diffAssetPtToMarket > 0 && sumPt > 0, "invalid ptToMarket");
int256 part1 = (ptToMarket * (totalPt + comp.totalAsset)).divDown(sumPt * diffAssetPtToMarket);
int256 part2 = sumPt.divDown(diffAssetPtToMarket).ln();
int256 part3 = PMath.IONE.divDown(comp.rateScalar);
return comp.rateAnchor - (part1 - part2).mulDown(part3);
}
}
library MarketApproxPtOutLib {
using MarketMathCore for MarketState;
using PYIndexLib for PYIndex;
using PMath for uint256;
using PMath for int256;
using LogExpMath for int256;
/**
* @dev algorithm:
* - Bin search the amount of PT to swapExactOut
* - Calculate the amount of SY needed
* - Stop when the netSyIn is smaller approx exactSyIn
* - guess & approx is for netSyIn
*/
function approxSwapExactSyForPt(
MarketState memory market,
PYIndex index,
uint256 exactSyIn,
uint256 blockTime,
ApproxParams memory approx
) internal pure returns (uint256, /*netPtOut*/ uint256 /*netSyFee*/) {
MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
if (approx.guessOffchain == 0) {
// no limit on min
approx.guessMax = PMath.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt));
validateApprox(approx);
}
for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
uint256 guess = nextGuess(approx, iter);
(uint256 netSyIn, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess);
if (netSyIn <= exactSyIn) {
if (PMath.isASmallerApproxB(netSyIn, exactSyIn, approx.eps)) {
return (guess, netSyFee);
}
approx.guessMin = guess;
} else {
approx.guessMax = guess - 1;
}
}
revert Errors.ApproxFail();
}
/**
* @dev algorithm:
* - Bin search the amount of PT to swapExactOut
* - Flashswap that amount of PT & pair with YT to redeem SY
* - Use the SY to repay the flashswap debt and the remaining is transferred to user
* - Stop when the netSyOut is greater approx the minSyOut
* - guess & approx is for netSyOut
*/
function approxSwapYtForExactSy(
MarketState memory market,
PYIndex index,
uint256 minSyOut,
uint256 blockTime,
ApproxParams memory approx
) internal pure returns (uint256, /*netYtIn*/ uint256, /*netSyOut*/ uint256 /*netSyFee*/) {
MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
if (approx.guessOffchain == 0) {
// no limit on min
approx.guessMax = PMath.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt));
validateApprox(approx);
}
for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
uint256 guess = nextGuess(approx, iter);
(uint256 netSyOwed, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess);
uint256 netAssetToRepay = index.syToAssetUp(netSyOwed);
uint256 netSyOut = index.assetToSy(guess - netAssetToRepay);
if (netSyOut >= minSyOut) {
if (PMath.isAGreaterApproxB(netSyOut, minSyOut, approx.eps)) {
return (guess, netSyOut, netSyFee);
}
approx.guessMax = guess;
} else {
approx.guessMin = guess + 1;
}
}
revert Errors.ApproxFail();
}
struct Args6 {
MarketState market;
PYIndex index;
uint256 totalSyIn;
uint256 netPtHolding;
uint256 blockTime;
ApproxParams approx;
}
/**
* @dev algorithm:
* - Bin search the amount of PT to swapExactOut
* - Swap that amount of PT out
* - Pair the remaining PT with the SY to add liquidity
* - Stop when the ratio of PT / totalPt & SY / totalSy is approx
* - guess & approx is for netPtFromSwap
*/
function approxSwapSyToAddLiquidity(
MarketState memory _market,
PYIndex _index,
uint256 _totalSyIn,
uint256 _netPtHolding,
uint256 _blockTime,
ApproxParams memory _approx
) internal pure returns (uint256, /*netPtFromSwap*/ uint256, /*netSySwap*/ uint256 /*netSyFee*/) {
Args6 memory a = Args6(_market, _index, _totalSyIn, _netPtHolding, _blockTime, _approx);
MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime);
if (a.approx.guessOffchain == 0) {
// no limit on min
a.approx.guessMax = PMath.min(a.approx.guessMax, calcMaxPtOut(comp, a.market.totalPt));
validateApprox(a.approx);
require(a.market.totalLp != 0, "no existing lp");
}
for (uint256 iter = 0; iter < a.approx.maxIteration; ++iter) {
uint256 guess = nextGuess(a.approx, iter);
(uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) = calcSyIn(a.market, comp, a.index, guess);
if (netSyIn > a.totalSyIn) {
a.approx.guessMax = guess - 1;
continue;
}
uint256 syNumerator;
uint256 ptNumerator;
{
uint256 newTotalPt = uint256(a.market.totalPt) - guess;
uint256 netTotalSy = uint256(a.market.totalSy) + netSyIn - netSyToReserve;
// it is desired that
// (netPtFromSwap + netPtHolding) / newTotalPt = netSyRemaining / netTotalSy
// which is equivalent to
// (netPtFromSwap + netPtHolding) * netTotalSy = netSyRemaining * newTotalPt
ptNumerator = (guess + a.netPtHolding) * netTotalSy;
syNumerator = (a.totalSyIn - netSyIn) * newTotalPt;
}
if (PMath.isAApproxB(ptNumerator, syNumerator, a.approx.eps)) {
return (guess, netSyIn, netSyFee);
}
if (ptNumerator <= syNumerator) {
// needs more PT
a.approx.guessMin = guess + 1;
} else {
// needs less PT
a.approx.guessMax = guess - 1;
}
}
revert Errors.ApproxFail();
}
/**
* @dev algorithm:
* - Bin search the amount of PT to swapExactOut
* - Flashswap that amount of PT out
* - Pair all the PT with the YT to redeem SY
* - Use the SY to repay the flashswap debt
* - Stop when the amount of YT required to pair with PT is approx exactYtIn
* - guess & approx is for netPtFromSwap
*/
function approxSwapExactYtForPt(
MarketState memory market,
PYIndex index,
uint256 exactYtIn,
uint256 blockTime,
ApproxParams memory approx
) internal pure returns (uint256, /*netPtOut*/ uint256, /*totalPtSwapped*/ uint256 /*netSyFee*/) {
MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
if (approx.guessOffchain == 0) {
approx.guessMin = PMath.max(approx.guessMin, exactYtIn);
approx.guessMax = PMath.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt));
validateApprox(approx);
}
for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
uint256 guess = nextGuess(approx, iter);
(uint256 netSyOwed, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess);
uint256 netYtToPull = index.syToAssetUp(netSyOwed);
if (netYtToPull <= exactYtIn) {
if (PMath.isASmallerApproxB(netYtToPull, exactYtIn, approx.eps)) {
return (guess - netYtToPull, guess, netSyFee);
}
approx.guessMin = guess;
} else {
approx.guessMax = guess - 1;
}
}
revert Errors.ApproxFail();
}
////////////////////////////////////////////////////////////////////////////////
function calcSyIn(
MarketState memory market,
MarketPreCompute memory comp,
PYIndex index,
uint256 netPtOut
) internal pure returns (uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) {
(int256 _netSyIn, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade(comp, index, int256(netPtOut));
// all safe since totalPt and totalSy is int128
netSyIn = uint256(-_netSyIn);
netSyFee = uint256(_netSyFee);
netSyToReserve = uint256(_netSyToReserve);
}
function calcMaxPtOut(MarketPreCompute memory comp, int256 totalPt) internal pure returns (uint256) {
int256 logitP = (comp.feeRate - comp.rateAnchor).mulDown(comp.rateScalar).exp();
int256 proportion = logitP.divDown(logitP + PMath.IONE);
int256 numerator = proportion.mulDown(totalPt + comp.totalAsset);
int256 maxPtOut = totalPt - numerator;
// only get 99.9% of the theoretical max to accommodate some precision issues
return (uint256(maxPtOut) * 999) / 1000;
}
function nextGuess(ApproxParams memory approx, uint256 iter) internal pure returns (uint256) {
if (iter == 0 && approx.guessOffchain != 0) return approx.guessOffchain;
if (approx.guessMin <= approx.guessMax) return (approx.guessMin + approx.guessMax) / 2;
revert Errors.ApproxFail();
}
function validateApprox(ApproxParams memory approx) internal pure {
if (approx.guessMin > approx.guessMax || approx.eps > PMath.ONE) {
revert Errors.ApproxParamsInvalid(approx.guessMin, approx.guessMax, approx.eps);
}
}
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "../router/swap-aggregator/IPSwapAggregator.sol";
import "./IPLimitRouter.sol";
/*
*******************************************************************************************************************
*******************************************************************************************************************
* NOTICE *
* Refer to https://docs.pendle.finance/Developers/Contracts/PendleRouter for more information on
* TokenInput, TokenOutput, ApproxParams, LimitOrderData
* It's recommended to use Pendle's Hosted SDK to generate the params
*******************************************************************************************************************
*******************************************************************************************************************
*/
struct TokenInput {
// TOKEN DATA
address tokenIn;
uint256 netTokenIn;
address tokenMintSy;
// AGGREGATOR DATA
address pendleSwap;
SwapData swapData;
}
struct TokenOutput {
// TOKEN DATA
address tokenOut;
uint256 minTokenOut;
address tokenRedeemSy;
// AGGREGATOR DATA
address pendleSwap;
SwapData swapData;
}
struct LimitOrderData {
address limitRouter;
uint256 epsSkipMarket; // only used for swap operations, will be ignored otherwise
FillOrderParams[] normalFills;
FillOrderParams[] flashFills;
bytes optData;
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
interface IPMarketSwapCallback {
function swapCallback(int256 ptToAccount, int256 syToAccount, bytes calldata data) external;
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "../core/StandardizedYield/PYIndex.sol";
interface IPLimitOrderType {
enum OrderType {
SY_FOR_PT,
PT_FOR_SY,
SY_FOR_YT,
YT_FOR_SY
}
// Fixed-size order part with core information
struct StaticOrder {
uint256 salt;
uint256 expiry;
uint256 nonce;
OrderType orderType;
address token;
address YT;
address maker;
address receiver;
uint256 makingAmount;
uint256 lnImpliedRate;
uint256 failSafeRate;
}
struct FillResults {
uint256 totalMaking;
uint256 totalTaking;
uint256 totalFee;
uint256 totalNotionalVolume;
uint256[] netMakings;
uint256[] netTakings;
uint256[] netFees;
uint256[] notionalVolumes;
}
}
struct Order {
uint256 salt;
uint256 expiry;
uint256 nonce;
IPLimitOrderType.OrderType orderType;
address token;
address YT;
address maker;
address receiver;
uint256 makingAmount;
uint256 lnImpliedRate;
uint256 failSafeRate;
bytes permit;
}
struct FillOrderParams {
Order order;
bytes signature;
uint256 makingAmount;
}
interface IPLimitRouterCallback is IPLimitOrderType {
function limitRouterCallback(
uint256 actualMaking,
uint256 actualTaking,
uint256 totalFee,
bytes memory data
) external returns (bytes memory);
}
interface IPLimitRouter is IPLimitOrderType {
struct OrderStatus {
uint128 filledAmount;
uint128 remaining;
}
event OrderCanceled(address indexed maker, bytes32 indexed orderHash);
event OrderFilledV2(
bytes32 indexed orderHash,
OrderType indexed orderType,
address indexed YT,
address token,
uint256 netInputFromMaker,
uint256 netOutputToMaker,
uint256 feeAmount,
uint256 notionalVolume,
address maker,
address taker
);
// @dev actualMaking, actualTaking are in the SY form
function fill(
FillOrderParams[] memory params,
address receiver,
uint256 maxTaking,
bytes calldata optData,
bytes calldata callback
) external returns (uint256 actualMaking, uint256 actualTaking, uint256 totalFee, bytes memory callbackReturn);
function feeRecipient() external view returns (address);
function hashOrder(Order memory order) external view returns (bytes32);
function cancelSingle(Order calldata order) external;
function cancelBatch(Order[] calldata orders) external;
function orderStatusesRaw(
bytes32[] memory orderHashes
) external view returns (uint256[] memory remainingsRaw, uint256[] memory filledAmounts);
function orderStatuses(
bytes32[] memory orderHashes
) external view returns (uint256[] memory remainings, uint256[] memory filledAmounts);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function simulate(address target, bytes calldata data) external payable;
/* --- Deprecated events --- */
// deprecate on 7/1/2024, prior to official launch
event OrderFilled(
bytes32 indexed orderHash,
OrderType indexed orderType,
address indexed YT,
address token,
uint256 netInputFromMaker,
uint256 netOutputToMaker,
uint256 feeAmount,
uint256 notionalVolume
);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.8.0;
/* solhint-disable private-vars-leading-underscore, reason-string */
library PMath {
uint256 internal constant ONE = 1e18; // 18 decimal places
int256 internal constant IONE = 1e18; // 18 decimal places
function subMax0(uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
return (a >= b ? a - b : 0);
}
}
function subNoNeg(int256 a, int256 b) internal pure returns (int256) {
require(a >= b, "negative");
return a - b; // no unchecked since if b is very negative, a - b might overflow
}
function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 product = a * b;
unchecked {
return product / ONE;
}
}
function mulDown(int256 a, int256 b) internal pure returns (int256) {
int256 product = a * b;
unchecked {
return product / IONE;
}
}
function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 aInflated = a * ONE;
unchecked {
return aInflated / b;
}
}
function divDown(int256 a, int256 b) internal pure returns (int256) {
int256 aInflated = a * IONE;
unchecked {
return aInflated / b;
}
}
function rawDivUp(uint256 a, uint256 b) internal pure returns (uint256) {
return (a + b - 1) / b;
}
// @author Uniswap
function sqrt(uint256 y) internal pure returns (uint256 z) {
if (y > 3) {
z = y;
uint256 x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
}
} else if (y != 0) {
z = 1;
}
}
function square(uint256 x) internal pure returns (uint256) {
return x * x;
}
function squareDown(uint256 x) internal pure returns (uint256) {
return mulDown(x, x);
}
function abs(int256 x) internal pure returns (uint256) {
return uint256(x > 0 ? x : -x);
}
function neg(int256 x) internal pure returns (int256) {
return x * (-1);
}
function neg(uint256 x) internal pure returns (int256) {
return Int(x) * (-1);
}
function max(uint256 x, uint256 y) internal pure returns (uint256) {
return (x > y ? x : y);
}
function max(int256 x, int256 y) internal pure returns (int256) {
return (x > y ? x : y);
}
function min(uint256 x, uint256 y) internal pure returns (uint256) {
return (x < y ? x : y);
}
function min(int256 x, int256 y) internal pure returns (int256) {
return (x < y ? x : y);
}
/*///////////////////////////////////////////////////////////////
SIGNED CASTS
//////////////////////////////////////////////////////////////*/
function Int(uint256 x) internal pure returns (int256) {
require(x <= uint256(type(int256).max));
return int256(x);
}
function Int128(int256 x) internal pure returns (int128) {
require(type(int128).min <= x && x <= type(int128).max);
return int128(x);
}
function Int128(uint256 x) internal pure returns (int128) {
return Int128(Int(x));
}
/*///////////////////////////////////////////////////////////////
UNSIGNED CASTS
//////////////////////////////////////////////////////////////*/
function Uint(int256 x) internal pure returns (uint256) {
require(x >= 0);
return uint256(x);
}
function Uint32(uint256 x) internal pure returns (uint32) {
require(x <= type(uint32).max);
return uint32(x);
}
function Uint64(uint256 x) internal pure returns (uint64) {
require(x <= type(uint64).max);
return uint64(x);
}
function Uint112(uint256 x) internal pure returns (uint112) {
require(x <= type(uint112).max);
return uint112(x);
}
function Uint96(uint256 x) internal pure returns (uint96) {
require(x <= type(uint96).max);
return uint96(x);
}
function Uint128(uint256 x) internal pure returns (uint128) {
require(x <= type(uint128).max);
return uint128(x);
}
function Uint192(uint256 x) internal pure returns (uint192) {
require(x <= type(uint192).max);
return uint192(x);
}
function isAApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) {
return mulDown(b, ONE - eps) <= a && a <= mulDown(b, ONE + eps);
}
function isAGreaterApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) {
return a >= b && a <= mulDown(b, ONE + eps);
}
function isASmallerApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) {
return a <= b && a >= mulDown(b, ONE - eps);
}
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "../libraries/math/PMath.sol";
import "../libraries/math/LogExpMath.sol";
import "../StandardizedYield/PYIndex.sol";
import "../libraries/MiniHelpers.sol";
import "../libraries/Errors.sol";
struct MarketState {
int256 totalPt;
int256 totalSy;
int256 totalLp;
address treasury;
/// immutable variables ///
int256 scalarRoot;
uint256 expiry;
/// fee data ///
uint256 lnFeeRateRoot;
uint256 reserveFeePercent; // base 100
/// last trade data ///
uint256 lastLnImpliedRate;
}
// params that are expensive to compute, therefore we pre-compute them
struct MarketPreCompute {
int256 rateScalar;
int256 totalAsset;
int256 rateAnchor;
int256 feeRate;
}
// solhint-disable ordering
library MarketMathCore {
using PMath for uint256;
using PMath for int256;
using LogExpMath for int256;
using PYIndexLib for PYIndex;
int256 internal constant MINIMUM_LIQUIDITY = 10 ** 3;
int256 internal constant PERCENTAGE_DECIMALS = 100;
uint256 internal constant DAY = 86400;
uint256 internal constant IMPLIED_RATE_TIME = 365 * DAY;
int256 internal constant MAX_MARKET_PROPORTION = (1e18 * 96) / 100;
using PMath for uint256;
using PMath for int256;
/*///////////////////////////////////////////////////////////////
UINT FUNCTIONS TO PROXY TO CORE FUNCTIONS
//////////////////////////////////////////////////////////////*/
function addLiquidity(
MarketState memory market,
uint256 syDesired,
uint256 ptDesired,
uint256 blockTime
) internal pure returns (uint256 lpToReserve, uint256 lpToAccount, uint256 syUsed, uint256 ptUsed) {
(int256 _lpToReserve, int256 _lpToAccount, int256 _syUsed, int256 _ptUsed) = addLiquidityCore(
market,
syDesired.Int(),
ptDesired.Int(),
blockTime
);
lpToReserve = _lpToReserve.Uint();
lpToAccount = _lpToAccount.Uint();
syUsed = _syUsed.Uint();
ptUsed = _ptUsed.Uint();
}
function removeLiquidity(
MarketState memory market,
uint256 lpToRemove
) internal pure returns (uint256 netSyToAccount, uint256 netPtToAccount) {
(int256 _syToAccount, int256 _ptToAccount) = removeLiquidityCore(market, lpToRemove.Int());
netSyToAccount = _syToAccount.Uint();
netPtToAccount = _ptToAccount.Uint();
}
function swapExactPtForSy(
MarketState memory market,
PYIndex index,
uint256 exactPtToMarket,
uint256 blockTime
) internal pure returns (uint256 netSyToAccount, uint256 netSyFee, uint256 netSyToReserve) {
(int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore(
market,
index,
exactPtToMarket.neg(),
blockTime
);
netSyToAccount = _netSyToAccount.Uint();
netSyFee = _netSyFee.Uint();
netSyToReserve = _netSyToReserve.Uint();
}
function swapSyForExactPt(
MarketState memory market,
PYIndex index,
uint256 exactPtToAccount,
uint256 blockTime
) internal pure returns (uint256 netSyToMarket, uint256 netSyFee, uint256 netSyToReserve) {
(int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore(
market,
index,
exactPtToAccount.Int(),
blockTime
);
netSyToMarket = _netSyToAccount.neg().Uint();
netSyFee = _netSyFee.Uint();
netSyToReserve = _netSyToReserve.Uint();
}
/*///////////////////////////////////////////////////////////////
CORE FUNCTIONS
//////////////////////////////////////////////////////////////*/
function addLiquidityCore(
MarketState memory market,
int256 syDesired,
int256 ptDesired,
uint256 blockTime
) internal pure returns (int256 lpToReserve, int256 lpToAccount, int256 syUsed, int256 ptUsed) {
/// ------------------------------------------------------------
/// CHECKS
/// ------------------------------------------------------------
if (syDesired == 0 || ptDesired == 0) revert Errors.MarketZeroAmountsInput();
if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();
/// ------------------------------------------------------------
/// MATH
/// ------------------------------------------------------------
if (market.totalLp == 0) {
lpToAccount = PMath.sqrt((syDesired * ptDesired).Uint()).Int() - MINIMUM_LIQUIDITY;
lpToReserve = MINIMUM_LIQUIDITY;
syUsed = syDesired;
ptUsed = ptDesired;
} else {
int256 netLpByPt = (ptDesired * market.totalLp) / market.totalPt;
int256 netLpBySy = (syDesired * market.totalLp) / market.totalSy;
if (netLpByPt < netLpBySy) {
lpToAccount = netLpByPt;
ptUsed = ptDesired;
syUsed = (market.totalSy * lpToAccount) / market.totalLp;
} else {
lpToAccount = netLpBySy;
syUsed = syDesired;
ptUsed = (market.totalPt * lpToAccount) / market.totalLp;
}
}
if (lpToAccount <= 0) revert Errors.MarketZeroAmountsOutput();
/// ------------------------------------------------------------
/// WRITE
/// ------------------------------------------------------------
market.totalSy += syUsed;
market.totalPt += ptUsed;
market.totalLp += lpToAccount + lpToReserve;
}
function removeLiquidityCore(
MarketState memory market,
int256 lpToRemove
) internal pure returns (int256 netSyToAccount, int256 netPtToAccount) {
/// ------------------------------------------------------------
/// CHECKS
/// ------------------------------------------------------------
if (lpToRemove == 0) revert Errors.MarketZeroAmountsInput();
/// ------------------------------------------------------------
/// MATH
/// ------------------------------------------------------------
netSyToAccount = (lpToRemove * market.totalSy) / market.totalLp;
netPtToAccount = (lpToRemove * market.totalPt) / market.totalLp;
if (netSyToAccount == 0 && netPtToAccount == 0) revert Errors.MarketZeroAmountsOutput();
/// ------------------------------------------------------------
/// WRITE
/// ------------------------------------------------------------
market.totalLp = market.totalLp.subNoNeg(lpToRemove);
market.totalPt = market.totalPt.subNoNeg(netPtToAccount);
market.totalSy = market.totalSy.subNoNeg(netSyToAccount);
}
function executeTradeCore(
MarketState memory market,
PYIndex index,
int256 netPtToAccount,
uint256 blockTime
) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) {
/// ------------------------------------------------------------
/// CHECKS
/// ------------------------------------------------------------
if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();
if (market.totalPt <= netPtToAccount)
revert Errors.MarketInsufficientPtForTrade(market.totalPt, netPtToAccount);
/// ------------------------------------------------------------
/// MATH
/// ------------------------------------------------------------
MarketPreCompute memory comp = getMarketPreCompute(market, index, blockTime);
(netSyToAccount, netSyFee, netSyToReserve) = calcTrade(market, comp, index, netPtToAccount);
/// ------------------------------------------------------------
/// WRITE
/// ------------------------------------------------------------
_setNewMarketStateTrade(market, comp, index, netPtToAccount, netSyToAccount, netSyToReserve, blockTime);
}
function getMarketPreCompute(
MarketState memory market,
PYIndex index,
uint256 blockTime
) internal pure returns (MarketPreCompute memory res) {
if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();
uint256 timeToExpiry = market.expiry - blockTime;
res.rateScalar = _getRateScalar(market, timeToExpiry);
res.totalAsset = index.syToAsset(market.totalSy);
if (market.totalPt == 0 || res.totalAsset == 0)
revert Errors.MarketZeroTotalPtOrTotalAsset(market.totalPt, res.totalAsset);
res.rateAnchor = _getRateAnchor(
market.totalPt,
market.lastLnImpliedRate,
res.totalAsset,
res.rateScalar,
timeToExpiry
);
res.feeRate = _getExchangeRateFromImpliedRate(market.lnFeeRateRoot, timeToExpiry);
}
function calcTrade(
MarketState memory market,
MarketPreCompute memory comp,
PYIndex index,
int256 netPtToAccount
) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) {
int256 preFeeExchangeRate = _getExchangeRate(
market.totalPt,
comp.totalAsset,
comp.rateScalar,
comp.rateAnchor,
netPtToAccount
);
int256 preFeeAssetToAccount = netPtToAccount.divDown(preFeeExchangeRate).neg();
int256 fee = comp.feeRate;
if (netPtToAccount > 0) {
int256 postFeeExchangeRate = preFeeExchangeRate.divDown(fee);
if (postFeeExchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(postFeeExchangeRate);
fee = preFeeAssetToAccount.mulDown(PMath.IONE - fee);
} else {
fee = ((preFeeAssetToAccount * (PMath.IONE - fee)) / fee).neg();
}
int256 netAssetToReserve = (fee * market.reserveFeePercent.Int()) / PERCENTAGE_DECIMALS;
int256 netAssetToAccount = preFeeAssetToAccount - fee;
netSyToAccount = netAssetToAccount < 0
? index.assetToSyUp(netAssetToAccount)
: index.assetToSy(netAssetToAccount);
netSyFee = index.assetToSy(fee);
netSyToReserve = index.assetToSy(netAssetToReserve);
}
function _setNewMarketStateTrade(
MarketState memory market,
MarketPreCompute memory comp,
PYIndex index,
int256 netPtToAccount,
int256 netSyToAccount,
int256 netSyToReserve,
uint256 blockTime
) internal pure {
uint256 timeToExpiry = market.expiry - blockTime;
market.totalPt = market.totalPt.subNoNeg(netPtToAccount);
market.totalSy = market.totalSy.subNoNeg(netSyToAccount + netSyToReserve);
market.lastLnImpliedRate = _getLnImpliedRate(
market.totalPt,
index.syToAsset(market.totalSy),
comp.rateScalar,
comp.rateAnchor,
timeToExpiry
);
if (market.lastLnImpliedRate == 0) revert Errors.MarketZeroLnImpliedRate();
}
function _getRateAnchor(
int256 totalPt,
uint256 lastLnImpliedRate,
int256 totalAsset,
int256 rateScalar,
uint256 timeToExpiry
) internal pure returns (int256 rateAnchor) {
int256 newExchangeRate = _getExchangeRateFromImpliedRate(lastLnImpliedRate, timeToExpiry);
if (newExchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(newExchangeRate);
{
int256 proportion = totalPt.divDown(totalPt + totalAsset);
int256 lnProportion = _logProportion(proportion);
rateAnchor = newExchangeRate - lnProportion.divDown(rateScalar);
}
}
/// @notice Calculates the current market implied rate.
/// @return lnImpliedRate the implied rate
function _getLnImpliedRate(
int256 totalPt,
int256 totalAsset,
int256 rateScalar,
int256 rateAnchor,
uint256 timeToExpiry
) internal pure returns (uint256 lnImpliedRate) {
// This will check for exchange rates < PMath.IONE
int256 exchangeRate = _getExchangeRate(totalPt, totalAsset, rateScalar, rateAnchor, 0);
// exchangeRate >= 1 so its ln >= 0
uint256 lnRate = exchangeRate.ln().Uint();
lnImpliedRate = (lnRate * IMPLIED_RATE_TIME) / timeToExpiry;
}
/// @notice Converts an implied rate to an exchange rate given a time to expiry. The
/// formula is E = e^rt
function _getExchangeRateFromImpliedRate(
uint256 lnImpliedRate,
uint256 timeToExpiry
) internal pure returns (int256 exchangeRate) {
uint256 rt = (lnImpliedRate * timeToExpiry) / IMPLIED_RATE_TIME;
exchangeRate = LogExpMath.exp(rt.Int());
}
function _getExchangeRate(
int256 totalPt,
int256 totalAsset,
int256 rateScalar,
int256 rateAnchor,
int256 netPtToAccount
) internal pure returns (int256 exchangeRate) {
int256 numerator = totalPt.subNoNeg(netPtToAccount);
int256 proportion = (numerator.divDown(totalPt + totalAsset));
if (proportion > MAX_MARKET_PROPORTION)
revert Errors.MarketProportionTooHigh(proportion, MAX_MARKET_PROPORTION);
int256 lnProportion = _logProportion(proportion);
exchangeRate = lnProportion.divDown(rateScalar) + rateAnchor;
if (exchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(exchangeRate);
}
function _logProportion(int256 proportion) internal pure returns (int256 res) {
if (proportion == PMath.IONE) revert Errors.MarketProportionMustNotEqualOne();
int256 logitP = proportion.divDown(PMath.IONE - proportion);
res = logitP.ln();
}
function _getRateScalar(MarketState memory market, uint256 timeToExpiry) internal pure returns (int256 rateScalar) {
rateScalar = (market.scalarRoot * IMPLIED_RATE_TIME.Int()) / timeToExpiry.Int();
if (rateScalar <= 0) revert Errors.MarketRateScalarBelowZero(rateScalar);
}
function setInitialLnImpliedRate(
MarketState memory market,
PYIndex index,
int256 initialAnchor,
uint256 blockTime
) internal pure {
/// ------------------------------------------------------------
/// CHECKS
/// ------------------------------------------------------------
if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();
/// ------------------------------------------------------------
/// MATH
/// ------------------------------------------------------------
int256 totalAsset = index.syToAsset(market.totalSy);
uint256 timeToExpiry = market.expiry - blockTime;
int256 rateScalar = _getRateScalar(market, timeToExpiry);
/// ------------------------------------------------------------
/// WRITE
/// ------------------------------------------------------------
market.lastLnImpliedRate = _getLnImpliedRate(
market.totalPt,
totalAsset,
rateScalar,
initialAnchor,
timeToExpiry
);
}
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
struct SwapData {
SwapType swapType;
address extRouter;
bytes extCalldata;
bool needScale;
}
enum SwapType {
NONE,
KYBERSWAP,
ONE_INCH,
// ETH_WETH not used in Aggregator
ETH_WETH
}
interface IPSwapAggregator {
function swap(address tokenIn, uint256 amountIn, SwapData calldata swapData) external payable;
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "../../interfaces/IPYieldToken.sol";
import "../../interfaces/IPPrincipalToken.sol";
import "./SYUtils.sol";
import "../libraries/math/PMath.sol";
type PYIndex is uint256;
library PYIndexLib {
using PMath for uint256;
using PMath for int256;
function newIndex(IPYieldToken YT) internal returns (PYIndex) {
return PYIndex.wrap(YT.pyIndexCurrent());
}
function syToAsset(PYIndex index, uint256 syAmount) internal pure returns (uint256) {
return SYUtils.syToAsset(PYIndex.unwrap(index), syAmount);
}
function assetToSy(PYIndex index, uint256 assetAmount) internal pure returns (uint256) {
return SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount);
}
function assetToSyUp(PYIndex index, uint256 assetAmount) internal pure returns (uint256) {
return SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount);
}
function syToAssetUp(PYIndex index, uint256 syAmount) internal pure returns (uint256) {
uint256 _index = PYIndex.unwrap(index);
return SYUtils.syToAssetUp(_index, syAmount);
}
function syToAsset(PYIndex index, int256 syAmount) internal pure returns (int256) {
int256 sign = syAmount < 0 ? int256(-1) : int256(1);
return sign * (SYUtils.syToAsset(PYIndex.unwrap(index), syAmount.abs())).Int();
}
function assetToSy(PYIndex index, int256 assetAmount) internal pure returns (int256) {
int256 sign = assetAmount < 0 ? int256(-1) : int256(1);
return sign * (SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount.abs())).Int();
}
function assetToSyUp(PYIndex index, int256 assetAmount) internal pure returns (int256) {
int256 sign = assetAmount < 0 ? int256(-1) : int256(1);
return sign * (SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount.abs())).Int();
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.
// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
pragma solidity ^0.8.0;
/* solhint-disable */
/**
* @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
*
* Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
* exponentiation and logarithm (where the base is Euler's number).
*
* @author Fernando Martinelli - @fernandomartinelli
* @author Sergio Yuhjtman - @sergioyuhjtman
* @author Daniel Fernandez - @dmf7z
*/
library LogExpMath {
// All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
// two numbers, and multiply by ONE when dividing them.
// All arguments and return values are 18 decimal fixed point numbers.
int256 constant ONE_18 = 1e18;
// Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
// case of ln36, 36 decimals.
int256 constant ONE_20 = 1e20;
int256 constant ONE_36 = 1e36;
// The domain of natural exponentiation is bound by the word size and number of decimals used.
//
// Because internally the result will be stored using 20 decimals, the largest possible result is
// (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
// The smallest possible result is 10^(-18), which makes largest negative argument
// ln(10^(-18)) = -41.446531673892822312.
// We use 130.0 and -41.0 to have some safety margin.
int256 constant MAX_NATURAL_EXPONENT = 130e18;
int256 constant MIN_NATURAL_EXPONENT = -41e18;
// Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
// 256 bit integer.
int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;
uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20);
// 18 decimal constants
int256 constant x0 = 128000000000000000000; // 2ˆ7
int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
int256 constant x1 = 64000000000000000000; // 2ˆ6
int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)
// 20 decimal constants
int256 constant x2 = 3200000000000000000000; // 2ˆ5
int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
int256 constant x3 = 1600000000000000000000; // 2ˆ4
int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
int256 constant x4 = 800000000000000000000; // 2ˆ3
int256 constant a4 = 298095798704172827474000; // eˆ(x4)
int256 constant x5 = 400000000000000000000; // 2ˆ2
int256 constant a5 = 5459815003314423907810; // eˆ(x5)
int256 constant x6 = 200000000000000000000; // 2ˆ1
int256 constant a6 = 738905609893065022723; // eˆ(x6)
int256 constant x7 = 100000000000000000000; // 2ˆ0
int256 constant a7 = 271828182845904523536; // eˆ(x7)
int256 constant x8 = 50000000000000000000; // 2ˆ-1
int256 constant a8 = 164872127070012814685; // eˆ(x8)
int256 constant x9 = 25000000000000000000; // 2ˆ-2
int256 constant a9 = 128402541668774148407; // eˆ(x9)
int256 constant x10 = 12500000000000000000; // 2ˆ-3
int256 constant a10 = 113314845306682631683; // eˆ(x10)
int256 constant x11 = 6250000000000000000; // 2ˆ-4
int256 constant a11 = 106449445891785942956; // eˆ(x11)
/**
* @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
*
* Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
*/
function exp(int256 x) internal pure returns (int256) {
unchecked {
require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent");
if (x < 0) {
// We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
// fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
// Fixed point division requires multiplying by ONE_18.
return ((ONE_18 * ONE_18) / exp(-x));
}
// First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
// where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
// because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
// decomposition.
// At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
// decomposition, which will be lower than the smallest x_n.
// exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
// We mutate x by subtracting x_n, making it the remainder of the decomposition.
// The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
// intermediate overflows. Instead we store them as plain integers, with 0 decimals.
// Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
// decomposition.
// For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
// it and compute the accumulated product.
int256 firstAN;
if (x >= x0) {
x -= x0;
firstAN = a0;
} else if (x >= x1) {
x -= x1;
firstAN = a1;
} else {
firstAN = 1; // One with no decimal places
}
// We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
// smaller terms.
x *= 100;
// `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
// one. Recall that fixed point multiplication requires dividing by ONE_20.
int256 product = ONE_20;
if (x >= x2) {
x -= x2;
product = (product * a2) / ONE_20;
}
if (x >= x3) {
x -= x3;
product = (product * a3) / ONE_20;
}
if (x >= x4) {
x -= x4;
product = (product * a4) / ONE_20;
}
if (x >= x5) {
x -= x5;
product = (product * a5) / ONE_20;
}
if (x >= x6) {
x -= x6;
product = (product * a6) / ONE_20;
}
if (x >= x7) {
x -= x7;
product = (product * a7) / ONE_20;
}
if (x >= x8) {
x -= x8;
product = (product * a8) / ONE_20;
}
if (x >= x9) {
x -= x9;
product = (product * a9) / ONE_20;
}
// x10 and x11 are unnecessary here since we have high enough precision already.
// Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
// expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).
int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
int256 term; // Each term in the sum, where the nth term is (x^n / n!).
// The first term is simply x.
term = x;
seriesSum += term;
// Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
// multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.
term = ((term * x) / ONE_20) / 2;
seriesSum += term;
term = ((term * x) / ONE_20) / 3;
seriesSum += term;
term = ((term * x) / ONE_20) / 4;
seriesSum += term;
term = ((term * x) / ONE_20) / 5;
seriesSum += term;
term = ((term * x) / ONE_20) / 6;
seriesSum += term;
term = ((term * x) / ONE_20) / 7;
seriesSum += term;
term = ((term * x) / ONE_20) / 8;
seriesSum += term;
term = ((term * x) / ONE_20) / 9;
seriesSum += term;
term = ((term * x) / ONE_20) / 10;
seriesSum += term;
term = ((term * x) / ONE_20) / 11;
seriesSum += term;
term = ((term * x) / ONE_20) / 12;
seriesSum += term;
// 12 Taylor terms are sufficient for 18 decimal precision.
// We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
// approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
// all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
// and then drop two digits to return an 18 decimal value.
return (((product * seriesSum) / ONE_20) * firstAN) / 100;
}
}
/**
* @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
*/
function ln(int256 a) internal pure returns (int256) {
unchecked {
// The real natural logarithm is not defined for negative numbers or zero.
require(a > 0, "out of bounds");
if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
return _ln_36(a) / ONE_18;
} else {
return _ln(a);
}
}
}
/**
* @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
*
* Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
*/
function pow(uint256 x, uint256 y) internal pure returns (uint256) {
unchecked {
if (y == 0) {
// We solve the 0^0 indetermination by making it equal one.
return uint256(ONE_18);
}
if (x == 0) {
return 0;
}
// Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
// arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
// x^y = exp(y * ln(x)).
// The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
require(x < 2 ** 255, "x out of bounds");
int256 x_int256 = int256(x);
// We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
// both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.
// This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
require(y < MILD_EXPONENT_BOUND, "y out of bounds");
int256 y_int256 = int256(y);
int256 logx_times_y;
if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
int256 ln_36_x = _ln_36(x_int256);
// ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
// bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
// multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
// (downscaled) last 18 decimals.
logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
} else {
logx_times_y = _ln(x_int256) * y_int256;
}
logx_times_y /= ONE_18;
// Finally, we compute exp(y * ln(x)) to arrive at x^y
require(
MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
"product out of bounds"
);
return uint256(exp(logx_times_y));
}
}
/**
* @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
*/
function _ln(int256 a) private pure returns (int256) {
unchecked {
if (a < ONE_18) {
// Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
// than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
// Fixed point division requires multiplying by ONE_18.
return (-_ln((ONE_18 * ONE_18) / a));
}
// First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
// we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
// ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
// be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
// At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
// decomposition, which will be lower than the smallest a_n.
// ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
// We mutate a by subtracting a_n, making it the remainder of the decomposition.
// For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
// numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
// ONE_18 to convert them to fixed point.
// For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
// by it and compute the accumulated sum.
int256 sum = 0;
if (a >= a0 * ONE_18) {
a /= a0; // Integer, not fixed point division
sum += x0;
}
if (a >= a1 * ONE_18) {
a /= a1; // Integer, not fixed point division
sum += x1;
}
// All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
sum *= 100;
a *= 100;
// Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.
if (a >= a2) {
a = (a * ONE_20) / a2;
sum += x2;
}
if (a >= a3) {
a = (a * ONE_20) / a3;
sum += x3;
}
if (a >= a4) {
a = (a * ONE_20) / a4;
sum += x4;
}
if (a >= a5) {
a = (a * ONE_20) / a5;
sum += x5;
}
if (a >= a6) {
a = (a * ONE_20) / a6;
sum += x6;
}
if (a >= a7) {
a = (a * ONE_20) / a7;
sum += x7;
}
if (a >= a8) {
a = (a * ONE_20) / a8;
sum += x8;
}
if (a >= a9) {
a = (a * ONE_20) / a9;
sum += x9;
}
if (a >= a10) {
a = (a * ONE_20) / a10;
sum += x10;
}
if (a >= a11) {
a = (a * ONE_20) / a11;
sum += x11;
}
// a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
// that converges rapidly for values of `a` close to one - the same one used in ln_36.
// Let z = (a - 1) / (a + 1).
// ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))
// Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
// division by ONE_20.
int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
int256 z_squared = (z * z) / ONE_20;
// num is the numerator of the series: the z^(2 * n + 1) term
int256 num = z;
// seriesSum holds the accumulated sum of each term in the series, starting with the initial z
int256 seriesSum = num;
// In each step, the numerator is multiplied by z^2
num = (num * z_squared) / ONE_20;
seriesSum += num / 3;
num = (num * z_squared) / ONE_20;
seriesSum += num / 5;
num = (num * z_squared) / ONE_20;
seriesSum += num / 7;
num = (num * z_squared) / ONE_20;
seriesSum += num / 9;
num = (num * z_squared) / ONE_20;
seriesSum += num / 11;
// 6 Taylor terms are sufficient for 36 decimal precision.
// Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
seriesSum *= 2;
// We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
// with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
// value.
return (sum + seriesSum) / 100;
}
}
/**
* @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
* for x close to one.
*
* Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
*/
function _ln_36(int256 x) private pure returns (int256) {
unchecked {
// Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
// worthwhile.
// First, we transform x to a 36 digit fixed point value.
x *= ONE_18;
// We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
// ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))
// Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
// division by ONE_36.
int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
int256 z_squared = (z * z) / ONE_36;
// num is the numerator of the series: the z^(2 * n + 1) term
int256 num = z;
// seriesSum holds the accumulated sum of each term in the series, starting with the initial z
int256 seriesSum = num;
// In each step, the numerator is multiplied by z^2
num = (num * z_squared) / ONE_36;
seriesSum += num / 3;
num = (num * z_squared) / ONE_36;
seriesSum += num / 5;
num = (num * z_squared) / ONE_36;
seriesSum += num / 7;
num = (num * z_squared) / ONE_36;
seriesSum += num / 9;
num = (num * z_squared) / ONE_36;
seriesSum += num / 11;
num = (num * z_squared) / ONE_36;
seriesSum += num / 13;
num = (num * z_squared) / ONE_36;
seriesSum += num / 15;
// 8 Taylor terms are sufficient for 36 decimal precision.
// All that remains is multiplying by 2 (non fixed point).
return seriesSum * 2;
}
}
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
library MiniHelpers {
function isCurrentlyExpired(uint256 expiry) internal view returns (bool) {
return (expiry <= block.timestamp);
}
function isExpired(uint256 expiry, uint256 blockTime) internal pure returns (bool) {
return (expiry <= blockTime);
}
function isTimeInThePast(uint256 timestamp) internal view returns (bool) {
return (timestamp <= block.timestamp); // same definition as isCurrentlyExpired
}
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
library Errors {
// BulkSeller
error BulkInsufficientSyForTrade(uint256 currentAmount, uint256 requiredAmount);
error BulkInsufficientTokenForTrade(uint256 currentAmount, uint256 requiredAmount);
error BulkInSufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut);
error BulkInSufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);
error BulkInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance);
error BulkNotMaintainer();
error BulkNotAdmin();
error BulkSellerAlreadyExisted(address token, address SY, address bulk);
error BulkSellerInvalidToken(address token, address SY);
error BulkBadRateTokenToSy(uint256 actualRate, uint256 currentRate, uint256 eps);
error BulkBadRateSyToToken(uint256 actualRate, uint256 currentRate, uint256 eps);
// APPROX
error ApproxFail();
error ApproxParamsInvalid(uint256 guessMin, uint256 guessMax, uint256 eps);
error ApproxBinarySearchInputInvalid(
uint256 approxGuessMin,
uint256 approxGuessMax,
uint256 minGuessMin,
uint256 maxGuessMax
);
// MARKET + MARKET MATH CORE
error MarketExpired();
error MarketZeroAmountsInput();
error MarketZeroAmountsOutput();
error MarketZeroLnImpliedRate();
error MarketInsufficientPtForTrade(int256 currentAmount, int256 requiredAmount);
error MarketInsufficientPtReceived(uint256 actualBalance, uint256 requiredBalance);
error MarketInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance);
error MarketZeroTotalPtOrTotalAsset(int256 totalPt, int256 totalAsset);
error MarketExchangeRateBelowOne(int256 exchangeRate);
error MarketProportionMustNotEqualOne();
error MarketRateScalarBelowZero(int256 rateScalar);
error MarketScalarRootBelowZero(int256 scalarRoot);
error MarketProportionTooHigh(int256 proportion, int256 maxProportion);
error OracleUninitialized();
error OracleTargetTooOld(uint32 target, uint32 oldest);
error OracleZeroCardinality();
error MarketFactoryExpiredPt();
error MarketFactoryInvalidPt();
error MarketFactoryMarketExists();
error MarketFactoryLnFeeRateRootTooHigh(uint80 lnFeeRateRoot, uint256 maxLnFeeRateRoot);
error MarketFactoryOverriddenFeeTooHigh(uint80 overriddenFee, uint256 marketLnFeeRateRoot);
error MarketFactoryReserveFeePercentTooHigh(uint8 reserveFeePercent, uint8 maxReserveFeePercent);
error MarketFactoryZeroTreasury();
error MarketFactoryInitialAnchorTooLow(int256 initialAnchor, int256 minInitialAnchor);
error MFNotPendleMarket(address addr);
// ROUTER
error RouterInsufficientLpOut(uint256 actualLpOut, uint256 requiredLpOut);
error RouterInsufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut);
error RouterInsufficientPtOut(uint256 actualPtOut, uint256 requiredPtOut);
error RouterInsufficientYtOut(uint256 actualYtOut, uint256 requiredYtOut);
error RouterInsufficientPYOut(uint256 actualPYOut, uint256 requiredPYOut);
error RouterInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);
error RouterInsufficientSyRepay(uint256 actualSyRepay, uint256 requiredSyRepay);
error RouterInsufficientPtRepay(uint256 actualPtRepay, uint256 requiredPtRepay);
error RouterNotAllSyUsed(uint256 netSyDesired, uint256 netSyUsed);
error RouterTimeRangeZero();
error RouterCallbackNotPendleMarket(address caller);
error RouterInvalidAction(bytes4 selector);
error RouterInvalidFacet(address facet);
error RouterKyberSwapDataZero();
error SimulationResults(bool success, bytes res);
// YIELD CONTRACT
error YCExpired();
error YCNotExpired();
error YieldContractInsufficientSy(uint256 actualSy, uint256 requiredSy);
error YCNothingToRedeem();
error YCPostExpiryDataNotSet();
error YCNoFloatingSy();
// YieldFactory
error YCFactoryInvalidExpiry();
error YCFactoryYieldContractExisted();
error YCFactoryZeroExpiryDivisor();
error YCFactoryZeroTreasury();
error YCFactoryInterestFeeRateTooHigh(uint256 interestFeeRate, uint256 maxInterestFeeRate);
error YCFactoryRewardFeeRateTooHigh(uint256 newRewardFeeRate, uint256 maxRewardFeeRate);
// SY
error SYInvalidTokenIn(address token);
error SYInvalidTokenOut(address token);
error SYZeroDeposit();
error SYZeroRedeem();
error SYInsufficientSharesOut(uint256 actualSharesOut, uint256 requiredSharesOut);
error SYInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);
// SY-specific
error SYQiTokenMintFailed(uint256 errCode);
error SYQiTokenRedeemFailed(uint256 errCode);
error SYQiTokenRedeemRewardsFailed(uint256 rewardAccruedType0, uint256 rewardAccruedType1);
error SYQiTokenBorrowRateTooHigh(uint256 borrowRate, uint256 borrowRateMax);
error SYCurveInvalidPid();
error SYCurve3crvPoolNotFound();
error SYApeDepositAmountTooSmall(uint256 amountDeposited);
error SYBalancerInvalidPid();
error SYInvalidRewardToken(address token);
error SYStargateRedeemCapExceeded(uint256 amountLpDesired, uint256 amountLpRedeemable);
error SYBalancerReentrancy();
error NotFromTrustedRemote(uint16 srcChainId, bytes path);
// Liquidity Mining
error VCInactivePool(address pool);
error VCPoolAlreadyActive(address pool);
error VCZeroVePendle(address user);
error VCExceededMaxWeight(uint256 totalWeight, uint256 maxWeight);
error VCEpochNotFinalized(uint256 wTime);
error VCPoolAlreadyAddAndRemoved(address pool);
error VEInvalidNewExpiry(uint256 newExpiry);
error VEExceededMaxLockTime();
error VEInsufficientLockTime();
error VENotAllowedReduceExpiry();
error VEZeroAmountLocked();
error VEPositionNotExpired();
error VEZeroPosition();
error VEZeroSlope(uint128 bias, uint128 slope);
error VEReceiveOldSupply(uint256 msgTime);
error GCNotPendleMarket(address caller);
error GCNotVotingController(address caller);
error InvalidWTime(uint256 wTime);
error ExpiryInThePast(uint256 expiry);
error ChainNotSupported(uint256 chainId);
error FDTotalAmountFundedNotMatch(uint256 actualTotalAmount, uint256 expectedTotalAmount);
error FDEpochLengthMismatch();
error FDInvalidPool(address pool);
error FDPoolAlreadyExists(address pool);
error FDInvalidNewFinishedEpoch(uint256 oldFinishedEpoch, uint256 newFinishedEpoch);
error FDInvalidStartEpoch(uint256 startEpoch);
error FDInvalidWTimeFund(uint256 lastFunded, uint256 wTime);
error FDFutureFunding(uint256 lastFunded, uint256 currentWTime);
error BDInvalidEpoch(uint256 epoch, uint256 startTime);
// Cross-Chain
error MsgNotFromSendEndpoint(uint16 srcChainId, bytes path);
error MsgNotFromReceiveEndpoint(address sender);
error InsufficientFeeToSendMsg(uint256 currentFee, uint256 requiredFee);
error ApproxDstExecutionGasNotSet();
error InvalidRetryData();
// GENERIC MSG
error ArrayLengthMismatch();
error ArrayEmpty();
error ArrayOutOfBounds();
error ZeroAddress();
error FailedToSendEther();
error InvalidMerkleProof();
error OnlyLayerZeroEndpoint();
error OnlyYT();
error OnlyYCFactory();
error OnlyWhitelisted();
// Swap Aggregator
error SAInsufficientTokenIn(address tokenIn, uint256 amountExpected, uint256 amountActual);
error UnsupportedSelector(uint256 aggregatorType, bytes4 selector);
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "./IRewardManager.sol";
import "./IPInterestManagerYT.sol";
interface IPYieldToken is IERC20Metadata, IRewardManager, IPInterestManagerYT {
event NewInterestIndex(uint256 indexed newIndex);
event Mint(
address indexed caller,
address indexed receiverPT,
address indexed receiverYT,
uint256 amountSyToMint,
uint256 amountPYOut
);
event Burn(address indexed caller, address indexed receiver, uint256 amountPYToRedeem, uint256 amountSyOut);
event RedeemRewards(address indexed user, uint256[] amountRewardsOut);
event RedeemInterest(address indexed user, uint256 interestOut);
event CollectRewardFee(address indexed rewardToken, uint256 amountRewardFee);
function mintPY(address receiverPT, address receiverYT) external returns (uint256 amountPYOut);
function redeemPY(address receiver) external returns (uint256 amountSyOut);
function redeemPYMulti(
address[] calldata receivers,
uint256[] calldata amountPYToRedeems
) external returns (uint256[] memory amountSyOuts);
function redeemDueInterestAndRewards(
address user,
bool redeemInterest,
bool redeemRewards
) external returns (uint256 interestOut, uint256[] memory rewardsOut);
function rewardIndexesCurrent() external returns (uint256[] memory);
function pyIndexCurrent() external returns (uint256);
function pyIndexStored() external view returns (uint256);
function getRewardTokens() external view returns (address[] memory);
function SY() external view returns (address);
function PT() external view returns (address);
function factory() external view returns (address);
function expiry() external view returns (uint256);
function isExpired() external view returns (bool);
function doCacheIndexSameBlock() external view returns (bool);
function pyIndexLastUpdatedBlock() external view returns (uint128);
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
interface IPPrincipalToken is IERC20Metadata {
function burnByYT(address user, uint256 amount) external;
function mintByYT(address user, uint256 amount) external;
function initialize(address _YT) external;
function SY() external view returns (address);
function YT() external view returns (address);
function factory() external view returns (address);
function expiry() external view returns (uint256);
function isExpired() external view returns (bool);
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
library SYUtils {
uint256 internal constant ONE = 1e18;
function syToAsset(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) {
return (syAmount * exchangeRate) / ONE;
}
function syToAssetUp(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) {
return (syAmount * exchangeRate + ONE - 1) / ONE;
}
function assetToSy(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) {
return (assetAmount * ONE) / exchangeRate;
}
function assetToSyUp(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) {
return (assetAmount * ONE + exchangeRate - 1) / exchangeRate;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
interface IRewardManager {
function userReward(address token, address user) external view returns (uint128 index, uint128 accrued);
}// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
interface IPInterestManagerYT {
event CollectInterestFee(uint256 amountInterestFee);
function userInterest(address user) external view returns (uint128 lastPYIndex, uint128 accruedInterest);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}{
"remappings": [
"@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
"@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
"ds-test/=lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-std/=lib/forge-std/src/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"solmate/=lib/solmate/src/",
"openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-foundry-upgrades/=lib/openzeppelin-foundry-upgrades/src/",
"openzeppelin/=lib/openzeppelin-contracts/contracts/",
"solidity-stringutils/=lib/openzeppelin-foundry-upgrades/lib/solidity-stringutils/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "paris",
"viaIR": true,
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_ACTION_ADD_REMOVE_LIQ","type":"address"},{"internalType":"address","name":"_ACTION_SWAP_PT","type":"address"},{"internalType":"address","name":"_ACTION_SWAP_YT","type":"address"},{"internalType":"address","name":"_ACTION_MISC","type":"address"},{"internalType":"address","name":"_ACTION_CALLBACK","type":"address"},{"internalType":"address","name":"_governor","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"RouterInvalidAction","type":"error"},{"anonymous":false,"inputs":[{"components":[{"internalType":"address","name":"facetAddress","type":"address"},{"internalType":"enum IDiamondCut.FacetCutAction","name":"action","type":"uint8"},{"internalType":"bytes4[]","name":"functionSelectors","type":"bytes4[]"}],"indexed":false,"internalType":"struct IDiamondCut.FacetCut[]","name":"_diamondCut","type":"tuple[]"},{"indexed":false,"internalType":"address","name":"_init","type":"address"},{"indexed":false,"internalType":"bytes","name":"_calldata","type":"bytes"}],"name":"DiamondCut","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"BLAST","outputs":[{"internalType":"contract IBlast","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"sig","type":"bytes4"}],"name":"facetAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"facetAddresses","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"facet","type":"address"}],"name":"facetFunctionSelectors","outputs":[{"internalType":"bytes4[]","name":"res","type":"bytes4[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"facets","outputs":[{"components":[{"internalType":"address","name":"facetAddress","type":"address"},{"internalType":"bytes4[]","name":"functionSelectors","type":"bytes4[]"}],"internalType":"struct IDiamondLoupe.Facet[]","name":"facets_","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]Contract Creation Code
610120806040523462000a2c57600060c08262001ce3803803809162000026828562000ab0565b8339810103126200036c576200003c8262000ad4565b916200004b6020820162000ad4565b620000596040830162000ad4565b620000676060840162000ad4565b916200008460a06200007c6080870162000ad4565b950162000ad4565b9560805260a05260c05260e05261010052604051620000a38162000a5b565b6006815260c036602083013730620000bb8262000b01565b526080516001600160a01b0316620000d38262000b25565b5260c0516001600160a01b0316620000eb8262000b36565b5260a0516001600160a01b0316620001038262000b47565b52610100516001600160a01b03166200011c8262000b58565b5260e0516001600160a01b0316620001348262000b69565b528051620001428162000ae9565b9162000152604051938462000ab0565b818352601f19620001638362000ae9565b01845b818110620009f4575050835b828110620005085750505080516200018a8162000ae9565b916200019a604051938462000ab0565b818352601f19620001ab8362000ae9565b01845b818110620004b6575050835b828110620004535750505060405190606082016060835281518091526080830190602060808260051b86010193019185905b828210620003a45787877f8faa70878671ccd212d20771b795c50af8fd3ff6cf27f4bde57e5d4de0aeb6738860208984828401528483820391826040860152520190a173430000000000000000000000000000000000000291823b15620003a057604051634e606c4760e01b815292828460048183855af1801562000395576200037e575b829350803b156200037a57604051631d70c8d360e31b81526001600160a01b0390921660048301529091908290602490829084905af180156200036f5762000354575b6040516110e8908162000bfb82396080518181816105ca01528181610b5401528181610bf00152610fd3015260a05181818161061e01528181610bca01528181610cbc0152611031015260c0518181816105f401528181610b7a01528181610d200152611003015260e05181818161067101528181610c1601528181610c69015261108d01526101005181818161064801528181610f52015261105f0152f35b62000360829162000a31565b6200036c5780620002b4565b80fd5b6040513d84823e3d90fd5b5050fd5b9190926200038c9062000a31565b90829062000271565b6040513d85823e3d90fd5b5080fd5b858503607f19018152835180516001600160a01b031686526020810151949593949293919260038110156200043f579060409160208401520151906060604082015260206080606083019284518094520192019088905b8082106200041b57505050602080600192960192019201909291620001ec565b82516001600160e01b031916845260209384019390920191600190910190620003fb565b634e487b7160e01b89526021600452602489fd5b6001906001600160a01b036200046a828562000be5565b51511662000479828762000be5565b51528560206200048a838862000be5565b51015260206200049b828562000be5565b5101516040620004ac838862000be5565b51015201620001ba565b604051606081016001600160401b03811182821017620004f457906020929160405287815287838201526060604082015282828801015201620001ae565b634e487b7160e01b88526041600452602488fd5b6001600160a01b036200051c828462000be5565b51166200052a828662000be5565b51526001600160a01b0362000540828462000be5565b511690606030831462000981575b6080516001600160a01b031683146200086d575b60c0516001600160a01b03168314620007d2575b60a0516001600160a01b031683146200075f575b610100516001600160a01b03168314620006e3575b60e0516001936001600160a01b0390911614620005cf575b6020620005c5838862000be5565b5101520162000172565b50604051620005de8162000a93565b600c815261018036602083013780630d4318d960e11b620005ff8262000b01565b52632d8f9d8d60e01b620006138262000b25565b526317038ee360e11b620006278262000b36565b5263339748cb60e01b6200063b8262000b47565b526319cd2ab960e11b6200064f8262000b58565b526323f8ef1160e11b620006638262000b69565b5263174f841760e21b620006778262000b7a565b5263307e423360e11b6200068b8262000b8b565b5263544f5d2560e11b6200069f8262000b9d565b5263bd61951d60e01b620006b38262000baf565b5263d0f4238560e01b620006c78262000bc1565b52631efc6ebd60e31b90620006dc9062000bd3565b52620005b7565b5060405190916001600160401b0360608301908111908311176200074b579060019291606082016040526002825260403660208401378163eb3a7d4760e01b6200072d8262000b01565b52637d241f3960e11b90620007429062000b25565b5292506200059f565b634e487b7160e01b87526041600452602487fd5b506040516200076e8162000a77565b60048152608036602083013780630a94245f60e21b6200078e8262000b01565b52633346d3a360e01b620007a28262000b25565b52631652a23360e21b620007b68262000b36565b5263640fc23d60e11b90620007cb9062000b47565b526200058a565b50604051620007e18162000a5b565b6006815260c0366020830137806305eb532760e01b620008018262000b01565b5263448b9b9560e01b620008158262000b25565b52637b8b4b9560e01b620008298262000b36565b526340626ab360e11b6200083d8262000b47565b5263190c351360e31b620008518262000b58565b526376a4483f60e11b90620008669062000b69565b5262000576565b506040516200087c8162000a93565b600c81526101803660208301378063092ccd6360e11b6200089d8262000b01565b526313ab670360e11b620008b18262000b25565b52633dbe1c5560e01b620008c58262000b36565b52634e39026760e01b620008d98262000b47565b526358bda47560e01b620008ed8262000b58565b52630306d04360e51b620009018262000b69565b526335bbd64f60e11b620009158262000b7a565b52634221c25560e11b620009298262000b8b565b52634bf713cf60e11b6200093d8262000b9d565b5263b00f09d760e01b620009518262000baf565b5263b7d75b8b60e01b620009658262000bc1565b5263344ed3f760e21b906200097a9062000bd3565b5262000562565b50604051620009908162000a77565b600481526080366020830137806314bbdacb60e21b620009b08262000b01565b52637a0ed62760e01b620009c48262000b25565b526356fe50af60e11b620009d88262000b36565b526366ffd66360e11b90620009ed9062000b47565b526200054e565b604080519081016001600160401b03811182821017620004f45790602092916040528781526060838201528282880101520162000166565b600080fd5b6001600160401b03811162000a4557604052565b634e487b7160e01b600052604160045260246000fd5b60e081019081106001600160401b0382111762000a4557604052565b60a081019081106001600160401b0382111762000a4557604052565b6101a081019081106001600160401b0382111762000a4557604052565b601f909101601f19168101906001600160401b0382119082101762000a4557604052565b51906001600160a01b038216820362000a2c57565b6001600160401b03811162000a455760051b60200190565b80511562000b0f5760200190565b634e487b7160e01b600052603260045260246000fd5b80516001101562000b0f5760400190565b80516002101562000b0f5760600190565b80516003101562000b0f5760800190565b80516004101562000b0f5760a00190565b80516005101562000b0f5760c00190565b80516006101562000b0f5760e00190565b80516007101562000b0f576101000190565b80516008101562000b0f576101200190565b80516009101562000b0f576101400190565b8051600a101562000b0f576101600190565b8051600b101562000b0f576101800190565b805182101562000b0f5760209160051b01019056fe60806040526004361015610015575b3661035557005b6000803560e01c90816352ef6b2c14610068575080637a0ed6271461006357806397d757761461005e578063adfca15e146100595763cdffacc60361000e57610313565b610298565b610275565b610188565b346100cd57806003193601126100cd57610080610fa1565b90604051918291602080840190808552835180925280604086019401925b8281106100ad57505050500390f35b83516001600160a01b03168552869550938101939281019260010161009e565b80fd5b602080820190808352835180925260409283810182858560051b840101960194600080935b86851061010757505050505050505090565b909192939480969798603f198382030186528951826060818885019360018060a01b038151168652015193888382015284518094520192019085905b8082106101645750505090806001929a0195019501939695949291906100f5565b82516001600160e01b03191684528a94938401939092019160019190910190610143565b34610270576000806003193601126100cd576101a2610fa1565b8051906101b66101b183610408565b6103e2565b82815292601f196101c684610408565b01815b8181106102505750505b8281106101ec57604051806101e886826100d0565b0390f35b8061022661020c6101ff600194866104fd565b516001600160a01b031690565b61021683886104fd565b516001600160a01b039091169052565b61023b6102366101ff83866104fd565b6105af565b602061024783886104fd565b510152016101d3565b60209061025b61039d565b848152826060818301528289010152016101c9565b600080fd5b34610270576000366003190112610270576040516002604360981b018152602090f35b3461027057602080600319360112610270576004356001600160a01b0381168103610270576102c6906105af565b906040519181839283018184528251809152816040850193019160005b8281106102f257505050500390f35b83516001600160e01b031916855286955093810193928101926001016102e3565b34610270576020366003190112610270576004356001600160e01b03198116810361027057610343602091610ab5565b6040516001600160a01b039091168152f35b6000808061036d81356001600160e01b031916610ab5565b368280378136915af43d82803e15610383573d90f35b3d90fd5b634e487b7160e01b600052604160045260246000fd5b604051906040820182811067ffffffffffffffff8211176103bd57604052565b610387565b6040519060e0820182811067ffffffffffffffff8211176103bd57604052565b6040519190601f01601f1916820167ffffffffffffffff8111838210176103bd57604052565b67ffffffffffffffff81116103bd5760051b60200190565b634e487b7160e01b600052603260045260246000fd5b8051156104435760200190565b610420565b8051600110156104435760400190565b8051600210156104435760600190565b8051600310156104435760800190565b8051600410156104435760a00190565b8051600510156104435760c00190565b8051600610156104435760e00190565b805160071015610443576101000190565b805160081015610443576101200190565b805160091015610443576101400190565b8051600a1015610443576101600190565b8051600b1015610443576101800190565b80518210156104435760209160051b010190565b6040519060a0820182811067ffffffffffffffff8211176103bd57604052600482526080366020840137565b604051906101a0820182811067ffffffffffffffff8211176103bd57604052600c8252610180366020840137565b6105736103c2565b600681529060c0366020840137565b604051906060820182811067ffffffffffffffff8211176103bd5760405260028252604082602036910137565b606091906001600160a01b0390811690308214610a45575b807f0000000000000000000000000000000000000000000000000000000000000000168214610915575b807f0000000000000000000000000000000000000000000000000000000000000000168214610875575b807f0000000000000000000000000000000000000000000000000000000000000000168214610805575b807f00000000000000000000000000000000000000000000000000000000000000001682146107c5575b7f0000000000000000000000000000000000000000000000000000000000000000161461069857565b90506106a261053d565b906106bb6106af83610436565b630d4318d960e11b9052565b6106d36106c783610448565b632d8f9d8d60e01b9052565b6106eb6106df83610458565b6317038ee360e11b9052565b6107036106f783610468565b63339748cb60e01b9052565b61071b61070f83610478565b6319cd2ab960e11b9052565b61073361072783610488565b6323f8ef1160e11b9052565b61074b61073f83610498565b63174f841760e21b9052565b610763610757836104a8565b63307e423360e11b9052565b61077b61076f836104b9565b63544f5d2560e11b9052565b610793610787836104ca565b63bd61951d60e01b9052565b6107ab61079f836104db565b63d0f4238560e01b9052565b6107c36107b7836104ec565b631efc6ebd60e31b9052565b565b92506107cf610582565b926107e86107dc85610436565b63eb3a7d4760e01b9052565b6108006107f485610448565b637d241f3960e11b9052565b61066f565b925061080f610511565b9261082861081c85610436565b630a94245f60e21b9052565b61084061083485610448565b633346d3a360e01b9052565b61085861084c85610458565b631652a23360e21b9052565b61087061086485610468565b63640fc23d60e11b9052565b610645565b925061087f61056b565b9261089861088c85610436565b6305eb532760e01b9052565b6108b06108a485610448565b63448b9b9560e01b9052565b6108c86108bc85610458565b637b8b4b9560e01b9052565b6108e06108d485610468565b6340626ab360e11b9052565b6108f86108ec85610478565b63190c351360e31b9052565b61091061090485610488565b6376a4483f60e11b9052565b61061b565b925061091f61053d565b9261093861092c85610436565b63092ccd6360e11b9052565b61095061094485610448565b6313ab670360e11b9052565b61096861095c85610458565b633dbe1c5560e01b9052565b61098061097485610468565b634e39026760e01b9052565b61099861098c85610478565b6358bda47560e01b9052565b6109b06109a485610488565b630306d04360e51b9052565b6109c86109bc85610498565b6335bbd64f60e11b9052565b6109e06109d4856104a8565b634221c25560e11b9052565b6109f86109ec856104b9565b634bf713cf60e11b9052565b610a10610a04856104ca565b63b00f09d760e01b9052565b610a28610a1c856104db565b63b7d75b8b60e01b9052565b610a40610a34856104ec565b63344ed3f760e21b9052565b6105f1565b9250610a4f610511565b92610a68610a5c85610436565b6314bbdacb60e21b9052565b610a80610a7485610448565b637a0ed62760e01b9052565b610a98610a8c85610458565b6356fe50af60e11b9052565b610ab0610aa485610468565b6366ffd66360e11b9052565b6105c7565b6001600160e01b031981166335bbd64f60e11b80821015610dd15750633dbe1c5560e01b80821015610cde5750632d8f9d8d60e01b80821015610c385750630d4318d960e11b80821015610b9c57506305eb532760e01b8114610b765763092ccd6360e11b14610b5157610b4d91505b604051636ad67de160e11b81526001600160e01b031990911660048201529081906024820190565b0390fd5b507f000000000000000000000000000000000000000000000000000000000000000090565b50507f000000000000000000000000000000000000000000000000000000000000000090565b8114610c12576313ab670360e11b8114610bec57630a94245f60e21b14610bc757610b4d9150610b25565b507f000000000000000000000000000000000000000000000000000000000000000090565b50507f000000000000000000000000000000000000000000000000000000000000000090565b50507f000000000000000000000000000000000000000000000000000000000000000090565b633346d3a360e01b80831015610c8b57508114610c12576317038ee360e11b14610c6657610b4d9150610b25565b507f000000000000000000000000000000000000000000000000000000000000000090565b90508114610cb85763339748cb60e01b8114610c12576319cd2ab960e11b14610c6657610b4d9150610b25565b50507f000000000000000000000000000000000000000000000000000000000000000090565b6358bda47560e01b80831015610d7457506323f8ef1160e11b80831015610d4257508114610bec5763448b9b9560e01b14610d1d57610b4d9150610b25565b507f000000000000000000000000000000000000000000000000000000000000000090565b90508114610c1257634e39026760e01b8114610bec576314bbdacb60e21b14610d6f57610b4d9150610b25565b503090565b905063174f841760e21b80831015610da457508114610bec57631652a23360e21b14610bc757610b4d9150610b25565b90508114610c1257630306d04360e51b8114610bec5763307e423360e11b14610c6657610b4d9150610b25565b63bd61951d60e01b80831015610eb15750634bf713cf60e11b80831015610e4e5750637b8b4b9560e01b80831015610e2157508114610bec57637a0ed62760e01b14610d6f57610b4d9150610b25565b90508114610b76576340626ab360e11b8114610b7657634221c25560e11b14610b5157610b4d9150610b25565b90506356fe50af60e11b80831015610e7e57508114610bec5763544f5d2560e11b14610c6657610b4d9150610b25565b90508114610eab5763b00f09d760e01b8114610bec5763b7d75b8b60e01b14610b5157610b4d9150610b25565b50503090565b905063344ed3f760e21b80831015610f1f575063190c351360e31b80831015610ef257508114610c125763640fc23d60e11b14610bc757610b4d9150610b25565b90508114610b76576366ffd66360e11b8114610eab5763d0f4238560e01b14610c6657610b4d9150610b25565b90506376a4483f60e11b80831015610f7457508114610bec5763eb3a7d4760e01b14610f4f57610b4d9150610b25565b507f000000000000000000000000000000000000000000000000000000000000000090565b90508114610b7657631efc6ebd60e31b8114610c1257637d241f3960e11b14610f4f57610b4d9150610b25565b610fa96103c2565b600681526020810160c036823781511561044357309052610fc981610448565b6001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000811690915261100082610458565b817f000000000000000000000000000000000000000000000000000000000000000016905261102e82610468565b817f000000000000000000000000000000000000000000000000000000000000000016905261105c82610478565b817f000000000000000000000000000000000000000000000000000000000000000016905261108a82610488565b907f00000000000000000000000000000000000000000000000000000000000000001690529056fea2646970667358221220a810963e5296ca0206c0e012299aa41baf03eb745616dac4f4c2388e41d0a79f64736f6c63430008140033000000000000000000000000a884a04bf1b21039bb3250fa6b3549b8f7a4b56d000000000000000000000000414a0508ff0cafbc4b6feb74c736d2295f7293ee0000000000000000000000000d1b44ccba201a1cfb30e8455051e137f328682f0000000000000000000000006a28abf3d78ff1fbf4562fbca41f43c0ca929421000000000000000000000000e59d976581e4152cc39b94041c626c726d3ab0e700000000000000000000000088653cb81db25da4136448bdf561b41b77b052c4
Deployed Bytecode
0x60806040526004361015610015575b3661035557005b6000803560e01c90816352ef6b2c14610068575080637a0ed6271461006357806397d757761461005e578063adfca15e146100595763cdffacc60361000e57610313565b610298565b610275565b610188565b346100cd57806003193601126100cd57610080610fa1565b90604051918291602080840190808552835180925280604086019401925b8281106100ad57505050500390f35b83516001600160a01b03168552869550938101939281019260010161009e565b80fd5b602080820190808352835180925260409283810182858560051b840101960194600080935b86851061010757505050505050505090565b909192939480969798603f198382030186528951826060818885019360018060a01b038151168652015193888382015284518094520192019085905b8082106101645750505090806001929a0195019501939695949291906100f5565b82516001600160e01b03191684528a94938401939092019160019190910190610143565b34610270576000806003193601126100cd576101a2610fa1565b8051906101b66101b183610408565b6103e2565b82815292601f196101c684610408565b01815b8181106102505750505b8281106101ec57604051806101e886826100d0565b0390f35b8061022661020c6101ff600194866104fd565b516001600160a01b031690565b61021683886104fd565b516001600160a01b039091169052565b61023b6102366101ff83866104fd565b6105af565b602061024783886104fd565b510152016101d3565b60209061025b61039d565b848152826060818301528289010152016101c9565b600080fd5b34610270576000366003190112610270576040516002604360981b018152602090f35b3461027057602080600319360112610270576004356001600160a01b0381168103610270576102c6906105af565b906040519181839283018184528251809152816040850193019160005b8281106102f257505050500390f35b83516001600160e01b031916855286955093810193928101926001016102e3565b34610270576020366003190112610270576004356001600160e01b03198116810361027057610343602091610ab5565b6040516001600160a01b039091168152f35b6000808061036d81356001600160e01b031916610ab5565b368280378136915af43d82803e15610383573d90f35b3d90fd5b634e487b7160e01b600052604160045260246000fd5b604051906040820182811067ffffffffffffffff8211176103bd57604052565b610387565b6040519060e0820182811067ffffffffffffffff8211176103bd57604052565b6040519190601f01601f1916820167ffffffffffffffff8111838210176103bd57604052565b67ffffffffffffffff81116103bd5760051b60200190565b634e487b7160e01b600052603260045260246000fd5b8051156104435760200190565b610420565b8051600110156104435760400190565b8051600210156104435760600190565b8051600310156104435760800190565b8051600410156104435760a00190565b8051600510156104435760c00190565b8051600610156104435760e00190565b805160071015610443576101000190565b805160081015610443576101200190565b805160091015610443576101400190565b8051600a1015610443576101600190565b8051600b1015610443576101800190565b80518210156104435760209160051b010190565b6040519060a0820182811067ffffffffffffffff8211176103bd57604052600482526080366020840137565b604051906101a0820182811067ffffffffffffffff8211176103bd57604052600c8252610180366020840137565b6105736103c2565b600681529060c0366020840137565b604051906060820182811067ffffffffffffffff8211176103bd5760405260028252604082602036910137565b606091906001600160a01b0390811690308214610a45575b807f000000000000000000000000a884a04bf1b21039bb3250fa6b3549b8f7a4b56d168214610915575b807f0000000000000000000000000d1b44ccba201a1cfb30e8455051e137f328682f168214610875575b807f000000000000000000000000414a0508ff0cafbc4b6feb74c736d2295f7293ee168214610805575b807f000000000000000000000000e59d976581e4152cc39b94041c626c726d3ab0e71682146107c5575b7f0000000000000000000000006a28abf3d78ff1fbf4562fbca41f43c0ca929421161461069857565b90506106a261053d565b906106bb6106af83610436565b630d4318d960e11b9052565b6106d36106c783610448565b632d8f9d8d60e01b9052565b6106eb6106df83610458565b6317038ee360e11b9052565b6107036106f783610468565b63339748cb60e01b9052565b61071b61070f83610478565b6319cd2ab960e11b9052565b61073361072783610488565b6323f8ef1160e11b9052565b61074b61073f83610498565b63174f841760e21b9052565b610763610757836104a8565b63307e423360e11b9052565b61077b61076f836104b9565b63544f5d2560e11b9052565b610793610787836104ca565b63bd61951d60e01b9052565b6107ab61079f836104db565b63d0f4238560e01b9052565b6107c36107b7836104ec565b631efc6ebd60e31b9052565b565b92506107cf610582565b926107e86107dc85610436565b63eb3a7d4760e01b9052565b6108006107f485610448565b637d241f3960e11b9052565b61066f565b925061080f610511565b9261082861081c85610436565b630a94245f60e21b9052565b61084061083485610448565b633346d3a360e01b9052565b61085861084c85610458565b631652a23360e21b9052565b61087061086485610468565b63640fc23d60e11b9052565b610645565b925061087f61056b565b9261089861088c85610436565b6305eb532760e01b9052565b6108b06108a485610448565b63448b9b9560e01b9052565b6108c86108bc85610458565b637b8b4b9560e01b9052565b6108e06108d485610468565b6340626ab360e11b9052565b6108f86108ec85610478565b63190c351360e31b9052565b61091061090485610488565b6376a4483f60e11b9052565b61061b565b925061091f61053d565b9261093861092c85610436565b63092ccd6360e11b9052565b61095061094485610448565b6313ab670360e11b9052565b61096861095c85610458565b633dbe1c5560e01b9052565b61098061097485610468565b634e39026760e01b9052565b61099861098c85610478565b6358bda47560e01b9052565b6109b06109a485610488565b630306d04360e51b9052565b6109c86109bc85610498565b6335bbd64f60e11b9052565b6109e06109d4856104a8565b634221c25560e11b9052565b6109f86109ec856104b9565b634bf713cf60e11b9052565b610a10610a04856104ca565b63b00f09d760e01b9052565b610a28610a1c856104db565b63b7d75b8b60e01b9052565b610a40610a34856104ec565b63344ed3f760e21b9052565b6105f1565b9250610a4f610511565b92610a68610a5c85610436565b6314bbdacb60e21b9052565b610a80610a7485610448565b637a0ed62760e01b9052565b610a98610a8c85610458565b6356fe50af60e11b9052565b610ab0610aa485610468565b6366ffd66360e11b9052565b6105c7565b6001600160e01b031981166335bbd64f60e11b80821015610dd15750633dbe1c5560e01b80821015610cde5750632d8f9d8d60e01b80821015610c385750630d4318d960e11b80821015610b9c57506305eb532760e01b8114610b765763092ccd6360e11b14610b5157610b4d91505b604051636ad67de160e11b81526001600160e01b031990911660048201529081906024820190565b0390fd5b507f000000000000000000000000a884a04bf1b21039bb3250fa6b3549b8f7a4b56d90565b50507f0000000000000000000000000d1b44ccba201a1cfb30e8455051e137f328682f90565b8114610c12576313ab670360e11b8114610bec57630a94245f60e21b14610bc757610b4d9150610b25565b507f000000000000000000000000414a0508ff0cafbc4b6feb74c736d2295f7293ee90565b50507f000000000000000000000000a884a04bf1b21039bb3250fa6b3549b8f7a4b56d90565b50507f0000000000000000000000006a28abf3d78ff1fbf4562fbca41f43c0ca92942190565b633346d3a360e01b80831015610c8b57508114610c12576317038ee360e11b14610c6657610b4d9150610b25565b507f0000000000000000000000006a28abf3d78ff1fbf4562fbca41f43c0ca92942190565b90508114610cb85763339748cb60e01b8114610c12576319cd2ab960e11b14610c6657610b4d9150610b25565b50507f000000000000000000000000414a0508ff0cafbc4b6feb74c736d2295f7293ee90565b6358bda47560e01b80831015610d7457506323f8ef1160e11b80831015610d4257508114610bec5763448b9b9560e01b14610d1d57610b4d9150610b25565b507f0000000000000000000000000d1b44ccba201a1cfb30e8455051e137f328682f90565b90508114610c1257634e39026760e01b8114610bec576314bbdacb60e21b14610d6f57610b4d9150610b25565b503090565b905063174f841760e21b80831015610da457508114610bec57631652a23360e21b14610bc757610b4d9150610b25565b90508114610c1257630306d04360e51b8114610bec5763307e423360e11b14610c6657610b4d9150610b25565b63bd61951d60e01b80831015610eb15750634bf713cf60e11b80831015610e4e5750637b8b4b9560e01b80831015610e2157508114610bec57637a0ed62760e01b14610d6f57610b4d9150610b25565b90508114610b76576340626ab360e11b8114610b7657634221c25560e11b14610b5157610b4d9150610b25565b90506356fe50af60e11b80831015610e7e57508114610bec5763544f5d2560e11b14610c6657610b4d9150610b25565b90508114610eab5763b00f09d760e01b8114610bec5763b7d75b8b60e01b14610b5157610b4d9150610b25565b50503090565b905063344ed3f760e21b80831015610f1f575063190c351360e31b80831015610ef257508114610c125763640fc23d60e11b14610bc757610b4d9150610b25565b90508114610b76576366ffd66360e11b8114610eab5763d0f4238560e01b14610c6657610b4d9150610b25565b90506376a4483f60e11b80831015610f7457508114610bec5763eb3a7d4760e01b14610f4f57610b4d9150610b25565b507f000000000000000000000000e59d976581e4152cc39b94041c626c726d3ab0e790565b90508114610b7657631efc6ebd60e31b8114610c1257637d241f3960e11b14610f4f57610b4d9150610b25565b610fa96103c2565b600681526020810160c036823781511561044357309052610fc981610448565b6001600160a01b037f000000000000000000000000a884a04bf1b21039bb3250fa6b3549b8f7a4b56d811690915261100082610458565b817f0000000000000000000000000d1b44ccba201a1cfb30e8455051e137f328682f16905261102e82610468565b817f000000000000000000000000414a0508ff0cafbc4b6feb74c736d2295f7293ee16905261105c82610478565b817f000000000000000000000000e59d976581e4152cc39b94041c626c726d3ab0e716905261108a82610488565b907f0000000000000000000000006a28abf3d78ff1fbf4562fbca41f43c0ca9294211690529056fea2646970667358221220a810963e5296ca0206c0e012299aa41baf03eb745616dac4f4c2388e41d0a79f64736f6c63430008140033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000a884a04bf1b21039bb3250fa6b3549b8f7a4b56d000000000000000000000000414a0508ff0cafbc4b6feb74c736d2295f7293ee0000000000000000000000000d1b44ccba201a1cfb30e8455051e137f328682f0000000000000000000000006a28abf3d78ff1fbf4562fbca41f43c0ca929421000000000000000000000000e59d976581e4152cc39b94041c626c726d3ab0e700000000000000000000000088653cb81db25da4136448bdf561b41b77b052c4
-----Decoded View---------------
Arg [0] : _ACTION_ADD_REMOVE_LIQ (address): 0xA884A04bf1b21039bb3250fa6b3549B8f7A4B56D
Arg [1] : _ACTION_SWAP_PT (address): 0x414A0508Ff0CAfBc4b6feb74c736d2295F7293EE
Arg [2] : _ACTION_SWAP_YT (address): 0x0d1B44cCBA201a1cFb30E8455051e137f328682f
Arg [3] : _ACTION_MISC (address): 0x6a28aBf3D78ff1fbf4562FBCa41F43c0ca929421
Arg [4] : _ACTION_CALLBACK (address): 0xe59d976581e4152Cc39B94041C626c726D3AB0E7
Arg [5] : _governor (address): 0x88653cb81db25dA4136448BDf561B41B77b052C4
-----Encoded View---------------
6 Constructor Arguments found :
Arg [0] : 000000000000000000000000a884a04bf1b21039bb3250fa6b3549b8f7a4b56d
Arg [1] : 000000000000000000000000414a0508ff0cafbc4b6feb74c736d2295f7293ee
Arg [2] : 0000000000000000000000000d1b44ccba201a1cfb30e8455051e137f328682f
Arg [3] : 0000000000000000000000006a28abf3d78ff1fbf4562fbca41f43c0ca929421
Arg [4] : 000000000000000000000000e59d976581e4152cc39b94041c626c726d3ab0e7
Arg [5] : 00000000000000000000000088653cb81db25da4136448bdf561b41b77b052c4
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in ETH
0
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.