ETH Price: $2,955.84 (+0.22%)

Contract

0xC546764b4AD3D00f1AaCfD5B5bb7f5A46fC4FaE8
 

Overview

ETH Balance

0 ETH

ETH Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To

There are no matching entries

1 Internal Transaction found.

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block From To
298054552026-01-14 19:58:459 days ago1768420725  Contract Creation0 ETH

Cross-Chain Transactions
Loading...
Loading

Minimal Proxy Contract for 0x3b9f24fd2ecfed0d3a88fa7f0e4e5747671981d7

Contract Name:
StaticAggregationIsm

Compiler Version
v0.8.19+commit.7dd6d404

Optimization Enabled:
Yes with 999999 runs

Other Settings:
paris EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.8.0;

// ============ Internal Imports ============
import {AbstractAggregationIsm} from "./AbstractAggregationIsm.sol";
import {AggregationIsmMetadata} from "../../isms/libs/AggregationIsmMetadata.sol";
import {MetaProxy} from "../../libs/MetaProxy.sol";

/**
 * @title StaticAggregationIsm
 * @notice Manages per-domain m-of-n ISM sets that are used to verify
 * interchain messages.
 */
contract StaticAggregationIsm is AbstractAggregationIsm {
    // ============ Public Functions ============

    /**
     * @notice Returns the set of ISMs responsible for verifying _message
     * and the number of ISMs that must verify
     * @dev Can change based on the content of _message
     * @return modules The array of ISM addresses
     * @return threshold The number of ISMs needed to verify
     */
    function modulesAndThreshold(bytes calldata)
        public
        view
        virtual
        override
        returns (address[] memory, uint8)
    {
        return abi.decode(MetaProxy.metadata(), (address[], uint8));
    }
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.8.0;

// ============ External Imports ============
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

// ============ Internal Imports ============
import {IInterchainSecurityModule} from "../../interfaces/IInterchainSecurityModule.sol";
import {IAggregationIsm} from "../../interfaces/isms/IAggregationIsm.sol";
import {AggregationIsmMetadata} from "../../isms/libs/AggregationIsmMetadata.sol";

/**
 * @title AggregationIsm
 * @notice Manages per-domain m-of-n ISM sets that are used to verify
 * interchain messages.
 */
abstract contract AbstractAggregationIsm is IAggregationIsm {
    // ============ Constants ============

    // solhint-disable-next-line const-name-snakecase
    uint8 public constant moduleType =
        uint8(IInterchainSecurityModule.Types.AGGREGATION);

    // ============ Virtual Functions ============
    // ======= OVERRIDE THESE TO IMPLEMENT =======

    /**
     * @notice Returns the set of ISMs responsible for verifying _message
     * and the number of ISMs that must verify
     * @dev Can change based on the content of _message
     * @param _message Hyperlane formatted interchain message
     * @return modules The array of ISM addresses
     * @return threshold The number of ISMs needed to verify
     */
    function modulesAndThreshold(bytes calldata _message)
        public
        view
        virtual
        returns (address[] memory, uint8);

    // ============ Public Functions ============

    /**
     * @notice Requires that m-of-n ISMs verify the provided interchain message.
     * @param _metadata ABI encoded module metadata (see AggregationIsmMetadata.sol)
     * @param _message Formatted Hyperlane message (see Message.sol).
     */
    function verify(bytes calldata _metadata, bytes calldata _message)
        public
        returns (bool)
    {
        (address[] memory _isms, uint8 _threshold) = modulesAndThreshold(
            _message
        );
        uint256 _count = _isms.length;
        for (uint8 i = 0; i < _count; i++) {
            if (!AggregationIsmMetadata.hasMetadata(_metadata, i)) continue;
            IInterchainSecurityModule _ism = IInterchainSecurityModule(
                _isms[i]
            );
            require(
                _ism.verify(
                    AggregationIsmMetadata.metadataAt(_metadata, i),
                    _message
                ),
                "!verify"
            );
            _threshold -= 1;
        }
        require(_threshold == 0, "!threshold");
        return true;
    }
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.8.0;

/**
 * Format of metadata:
 *
 * [????:????] Metadata start/end uint32 ranges, packed as uint64
 * [????:????] ISM metadata, packed encoding
 */
library AggregationIsmMetadata {
    uint256 private constant RANGE_SIZE = 4;

    /**
     * @notice Returns whether or not metadata was provided for the ISM at
     * `_index`
     * @dev Callers must ensure _index is less than the number of metadatas
     * provided
     * @param _metadata Encoded Aggregation ISM metadata
     * @param _index The index of the ISM to check for metadata for
     * @return Whether or not metadata was provided for the ISM at `_index`
     */
    function hasMetadata(bytes calldata _metadata, uint8 _index)
        internal
        pure
        returns (bool)
    {
        (uint32 _start, ) = _metadataRange(_metadata, _index);
        return _start > 0;
    }

    /**
     * @notice Returns the metadata provided for the ISM at `_index`
     * @dev Callers must ensure _index is less than the number of metadatas
     * provided
     * @dev Callers must ensure `hasMetadata(_metadata, _index)`
     * @param _metadata Encoded Aggregation ISM metadata
     * @param _index The index of the ISM to return metadata for
     * @return The metadata provided for the ISM at `_index`
     */
    function metadataAt(bytes calldata _metadata, uint8 _index)
        internal
        pure
        returns (bytes calldata)
    {
        (uint32 _start, uint32 _end) = _metadataRange(_metadata, _index);
        return _metadata[_start:_end];
    }

    /**
     * @notice Returns the range of the metadata provided for the ISM at
     * `_index`, or zeroes if not provided
     * @dev Callers must ensure _index is less than the number of metadatas
     * provided
     * @param _metadata Encoded Aggregation ISM metadata
     * @param _index The index of the ISM to return metadata range for
     * @return The range of the metadata provided for the ISM at `_index`, or
     * zeroes if not provided
     */
    function _metadataRange(bytes calldata _metadata, uint8 _index)
        private
        pure
        returns (uint32, uint32)
    {
        uint256 _start = (uint32(_index) * RANGE_SIZE * 2);
        uint256 _mid = _start + RANGE_SIZE;
        uint256 _end = _mid + RANGE_SIZE;
        return (
            uint32(bytes4(_metadata[_start:_mid])),
            uint32(bytes4(_metadata[_mid:_end]))
        );
    }
}

// SPDX-License-Identifier: CC0-1.0
pragma solidity >=0.7.6;

/// @dev Adapted from https://eips.ethereum.org/EIPS/eip-3448
library MetaProxy {
    bytes32 private constant PREFIX =
        hex"600b380380600b3d393df3363d3d373d3d3d3d60368038038091363936013d73";
    bytes13 private constant SUFFIX = hex"5af43d3d93803e603457fd5bf3";

    function bytecode(address _implementation, bytes memory _metadata)
        internal
        pure
        returns (bytes memory)
    {
        return
            abi.encodePacked(
                PREFIX,
                bytes20(_implementation),
                SUFFIX,
                _metadata,
                _metadata.length
            );
    }

    function metadata() internal pure returns (bytes memory) {
        bytes memory data;
        assembly {
            let posOfMetadataSize := sub(calldatasize(), 32)
            let size := calldataload(posOfMetadataSize)
            let dataPtr := sub(posOfMetadataSize, size)
            data := mload(64)
            // increment free memory pointer by metadata size + 32 bytes (length)
            mstore(64, add(data, add(size, 32)))
            mstore(data, size)
            let memPtr := add(data, 32)
            calldatacopy(memPtr, dataPtr, size)
        }
        return data;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.6.11;

interface IInterchainSecurityModule {
    enum Types {
        UNUSED,
        ROUTING,
        AGGREGATION,
        LEGACY_MULTISIG,
        MERKLE_ROOT_MULTISIG,
        MESSAGE_ID_MULTISIG,
        NULL, // used with relayer carrying no metadata
        CCIP_READ
    }

    /**
     * @notice Returns an enum that represents the type of security model
     * encoded by this ISM.
     * @dev Relayers infer how to fetch and format metadata.
     */
    function moduleType() external view returns (uint8);

    /**
     * @notice Defines a security model responsible for verifying interchain
     * messages based on the provided metadata.
     * @param _metadata Off-chain metadata provided by a relayer, specific to
     * the security model encoded by the module (e.g. validator signatures)
     * @param _message Hyperlane encoded interchain message
     * @return True if the message was verified
     */
    function verify(bytes calldata _metadata, bytes calldata _message)
        external
        returns (bool);
}

interface ISpecifiesInterchainSecurityModule {
    function interchainSecurityModule()
        external
        view
        returns (IInterchainSecurityModule);
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.6.11;

import {IInterchainSecurityModule} from "../IInterchainSecurityModule.sol";

interface IAggregationIsm is IInterchainSecurityModule {
    /**
     * @notice Returns the set of modules responsible for verifying _message
     * and the number of modules that must verify
     * @dev Can change based on the content of _message
     * @param _message Hyperlane formatted interchain message
     * @return modules The array of ISM addresses
     * @return threshold The number of modules needed to verify
     */
    function modulesAndThreshold(bytes calldata _message)
        external
        view
        returns (address[] memory modules, uint8 threshold);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/=../node_modules/@openzeppelin/",
    "@eth-optimism/=../node_modules/@eth-optimism/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "forge-std/=lib/forge-std/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 999999
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "viaIR": false,
  "libraries": {}
}

Contract ABI

API
[{"inputs":[],"name":"moduleType","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"","type":"bytes"}],"name":"modulesAndThreshold","outputs":[{"internalType":"address[]","name":"","type":"address[]"},{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"_metadata","type":"bytes"},{"internalType":"bytes","name":"_message","type":"bytes"}],"name":"verify","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.