ETH Price: $1,815.08 (+10.44%)

Contract

0xe27C6D3799d37afDAE59627148b521cd99D90003
 

Overview

ETH Balance

0 ETH

ETH Value

$0.00

Token Holdings

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Claim182990022025-04-23 11:30:191 hr ago1745407819IN
0xe27C6D37...d99D90003
0 ETH00.00000404
Claim182985122025-04-23 11:13:591 hr ago1745406839IN
0xe27C6D37...d99D90003
0 ETH0.000000060.00100401
Claim182964412025-04-23 10:04:572 hrs ago1745402697IN
0xe27C6D37...d99D90003
0 ETH0.000000060.00101066
Claim182963622025-04-23 10:02:193 hrs ago1745402539IN
0xe27C6D37...d99D90003
0 ETH0.000000060.00101011
Stake182757822025-04-22 22:36:1914 hrs ago1745361379IN
0xe27C6D37...d99D90003
0 ETH00.00000592
Claim182704952025-04-22 19:40:0517 hrs ago1745350805IN
0xe27C6D37...d99D90003
0 ETH00.00000401
Stake182690732025-04-22 18:52:4118 hrs ago1745347961IN
0xe27C6D37...d99D90003
0 ETH00.00000156
Claim182673802025-04-22 17:56:1519 hrs ago1745344575IN
0xe27C6D37...d99D90003
0 ETH00.00000202
Claim182622512025-04-22 15:05:1721 hrs ago1745334317IN
0xe27C6D37...d99D90003
0 ETH00.00000463
Claim182595392025-04-22 13:34:5323 hrs ago1745328893IN
0xe27C6D37...d99D90003
0 ETH0.000000010.00021725
Claim182579282025-04-22 12:41:1124 hrs ago1745325671IN
0xe27C6D37...d99D90003
0 ETH0.000000040.00068322
Claim182560272025-04-22 11:37:4925 hrs ago1745321869IN
0xe27C6D37...d99D90003
0 ETH0.000000060.0010157
Claim182519182025-04-22 9:20:5127 hrs ago1745313651IN
0xe27C6D37...d99D90003
0 ETH0.000000070.00088261
Claim182510152025-04-22 8:50:4528 hrs ago1745311845IN
0xe27C6D37...d99D90003
0 ETH0.000000080.00100722
Claim182242802025-04-21 17:59:3543 hrs ago1745258375IN
0xe27C6D37...d99D90003
0 ETH0.00000010.00120806
Claim182228112025-04-21 17:10:3743 hrs ago1745255437IN
0xe27C6D37...d99D90003
0 ETH0.000000060.00081245
Claim182192002025-04-21 15:10:1545 hrs ago1745248215IN
0xe27C6D37...d99D90003
0 ETH0.000000030.00042605
Claim182173992025-04-21 14:10:1346 hrs ago1745244613IN
0xe27C6D37...d99D90003
0 ETH0.000000060.00090721
Claim182165842025-04-21 13:43:0347 hrs ago1745242983IN
0xe27C6D37...d99D90003
0 ETH0.000000060.00096475
Claim182092502025-04-21 9:38:352 days ago1745228315IN
0xe27C6D37...d99D90003
0 ETH0.000000120.00145867
Claim182045412025-04-21 7:01:372 days ago1745218897IN
0xe27C6D37...d99D90003
0 ETH0.000000110.00131939
Stake182015222025-04-21 5:20:592 days ago1745212859IN
0xe27C6D37...d99D90003
0 ETH0.000000170.00122563
Claim181925142025-04-21 0:20:432 days ago1745194843IN
0xe27C6D37...d99D90003
0 ETH0.000000020.00031224
Claim181873362025-04-20 21:28:072 days ago1745184487IN
0xe27C6D37...d99D90003
0 ETH0.000000040.00065432
Claim181722692025-04-20 13:05:532 days ago1745154353IN
0xe27C6D37...d99D90003
0 ETH0.000000060.00094589
View all transactions

Parent Transaction Hash Block From To
View All Internal Transactions

Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
LockedCYBROStaking

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion
File 1 of 17 : LockedCYBROStaking.sol
// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.25;

import {CYBROStaking} from "./CYBROStaking.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {LockedCYBRO} from "./LockedCYBRO.sol";

contract LockedCYBROStaking is Ownable, CYBROStaking {
    constructor(address _owner, address _stakeToken, uint256 _lockTime, uint32 _percent)
        CYBROStaking(_owner, _stakeToken, _lockTime, _percent)
    {}

    function _sendReward(address user, uint256 reward) internal virtual override {
        LockedCYBRO lcybro = LockedCYBRO(address(stakeToken));
        address[] memory to = new address[](1);
        uint256[] memory amount = new uint256[](1);
        to[0] = user;
        amount[0] = reward + lcybro.allocations(user);
        lcybro.mintFor(to, amount);
    }
}

File 2 of 17 : CYBROStaking.sol
// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.25;

import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

contract CYBROStaking is Ownable {
    using SafeERC20 for IERC20Metadata;

    struct UserState {
        uint256 balance;
        uint256 lastClaimTimestamp;
        uint256 unlockTimestamp;
        uint256 yearlyReward;
    }

    mapping(address => UserState) public users;
    uint256 public lockTime;
    uint32 public percent;

    /// @notice Token being staked.
    IERC20Metadata public immutable stakeToken;

    /// @notice Minimal balance for stake.
    uint256 public minBalance;

    /// @notice Counter of deposits - withdrawals. Contains amount of funds owned by users
    /// which are kept in the contract.
    uint256 public totalLocked;

    /* ========== CONSTRUCTOR ========== */

    constructor(address _owner, address _stakeToken, uint256 _lockTime, uint32 _percent) Ownable(_owner) {
        lockTime = _lockTime;
        percent = _percent;
        stakeToken = IERC20Metadata(_stakeToken);
    }

    /// @notice Ensures that balance of the contract is not lower than total amount owed to
    /// users besides rewards.
    modifier ensureSolvency() virtual {
        _;
        require(stakeToken.balanceOf(address(this)) >= totalLocked, "CYBRO: insolvency");
    }

    /* ========== VIEWS ========== */

    function getRewardOf(address addr) public view virtual returns (uint256) {
        UserState memory user = users[addr];

        uint256 elapsed = user.lastClaimTimestamp > user.unlockTimestamp
            ? 0
            : Math.min(block.timestamp - user.lastClaimTimestamp, user.unlockTimestamp - user.lastClaimTimestamp);

        return user.yearlyReward * elapsed / 365 days;
    }

    /* ========== FUNCTIONS ========== */

    function setMinBalance(uint256 _minBalance) external onlyOwner {
        minBalance = _minBalance;
    }

    /// @notice Set lock time and percent
    function setLockTimeAndPercent(uint256 _lockTime, uint32 _percent) external onlyOwner {
        lockTime = _lockTime;
        percent = _percent;
    }

    /// @notice Stake given amount for given amount of time
    /// If user already has staked amount, lock is restarted.
    function stake(uint256 amount) external {
        UserState storage user = users[msg.sender];

        require(user.balance + amount >= minBalance, "CYBRO: you must send more to stake");
        require(amount > 0, "CYBRO: amount must be gt 0");

        claim();

        user.unlockTimestamp = block.timestamp + lockTime;
        user.balance += amount;
        user.yearlyReward = user.balance * percent / 1e4;
        totalLocked += amount;

        stakeToken.safeTransferFrom(msg.sender, address(this), amount);

        emit Staked(msg.sender, amount);
    }

    /// @notice Withdraw entire balance.
    /// @param force Whether to withdraw without claiming rewards. Should only be used in emergency
    /// cases when contract does not have enough funds to pay out rewards.
    function withdraw(bool force) public {
        UserState storage user = users[msg.sender];

        require(user.unlockTimestamp <= block.timestamp, "CYBRO: you must wait more to withdraw");
        require(user.balance > 0, "CYBRO: you haven't anything for withdraw");

        if (!force) {
            claim();
        }

        uint256 balance = user.balance;
        delete users[msg.sender];

        totalLocked -= balance;
        stakeToken.safeTransfer(msg.sender, balance);
        emit Withdrawn(msg.sender, balance);
    }

    function withdraw() external {
        withdraw(false);
    }

    /// @notice Claim all accrued rewards.
    function claim() public ensureSolvency returns (uint256 reward) {
        UserState storage user = users[msg.sender];
        reward = getRewardOf(msg.sender);
        user.lastClaimTimestamp = block.timestamp;
        if (reward > 0) {
            _sendReward(msg.sender, reward);
            emit Claimed(msg.sender, reward);
        }
    }

    /// @notice Function for administrators to withdraw extra amounts sent to the contract
    /// for reward payouts and for withdraw funds accidentally sent to the contract.
    function withdrawFunds(address token, uint256 amount) external virtual onlyOwner ensureSolvency {
        if (token == address(0)) {
            (bool success,) = payable(msg.sender).call{value: address(this).balance}("");
            require(success, "CYBRO: failed to send ETH");
        } else if (token != address(stakeToken)) {
            IERC20Metadata(token).safeTransfer(msg.sender, IERC20Metadata(token).balanceOf(address(this)));
        } else {
            stakeToken.safeTransfer(msg.sender, amount);
        }
    }

    /* ========== INTERNAL FUNCTIONS ========== */

    /// @notice Send reward to user
    function _sendReward(address user, uint256 reward) internal virtual {
        stakeToken.safeTransfer(user, reward);
    }

    /* ========== EVENTS ========== */
    event Staked(address indexed user, uint256 amount);
    event Withdrawn(address indexed user, uint256 amount);
    event Claimed(address indexed user, uint256 amount);
}

File 3 of 17 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 4 of 17 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}

File 5 of 17 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 6 of 17 : LockedCYBRO.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.25;

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";

/**
 * @title LockedCYBRO
 * @dev Contract for a locked CYBRO token with vesting functionality.
 */
contract LockedCYBRO is ERC20, Ownable {
    using SafeERC20 for IERC20Metadata;
    using ECDSA for bytes32;
    using MessageHashUtils for bytes32;

    /* ========== IMMUTABLE STATE VARIABLES ========== */

    /// @notice Timestamp of the Token Generation Event (TGE)
    uint256 public immutable tgeTimestamp;

    /// @notice Timestamp when vesting period starts
    uint256 public immutable vestingStart;

    /// @notice Duration of the vesting period in seconds
    uint256 public immutable vestingDuration;

    /// @notice Percentage of tokens released at TGE
    uint8 public immutable tgePercent;

    /// @notice Address of the underlying CYBRO token
    address public immutable cybro;

    /* ========== STATE VARIABLES ========== */

    /// @notice Total token allocation for each user
    mapping(address account => uint256) public allocations;

    /// @notice Amount of CYBRO tokens claimed by each user
    mapping(address account => uint256) public claimedAmount;

    /// @notice Addresses authorized to receive transfers
    mapping(address account => bool) public transferWhitelist;

    /// @notice Addresses authorized to mint tokens
    mapping(address minter => bool) public mintersWhitelist;

    /// @notice Flag indicating if users can mint tokens via signature
    bool public mintableByUsers;

    /* ========== CONSTRUCTOR ========== */

    /**
     * @dev Initializes the contract with vesting and TGE parameters, and sets up access control.
     * @param _lockedCYBROStakings Array of addresses allowed to stake locked CYBRO
     * @param _cybro Address of the CYBRO token
     * @param admin Address of the contract owner
     * @param _tgeTimestamp Timestamp for the token generation event
     * @param _tgePercent Percentage of tokens to be distributed at TGE
     * @param _vestingStart Timestamp when vesting commences
     * @param _vestingDuration Duration of the vesting period
     */
    constructor(
        address[] memory _lockedCYBROStakings,
        address _cybro,
        address admin,
        uint256 _tgeTimestamp,
        uint8 _tgePercent,
        uint256 _vestingStart,
        uint256 _vestingDuration
    ) ERC20("CYBRO Locked Token", "LCYBRO") Ownable(admin) {
        cybro = _cybro;
        tgeTimestamp = _tgeTimestamp;
        tgePercent = _tgePercent;
        vestingStart = _vestingStart;
        vestingDuration = _vestingDuration;

        for (uint256 i = 0; i < _lockedCYBROStakings.length; i++) {
            transferWhitelist[_lockedCYBROStakings[i]] = true;
            mintersWhitelist[_lockedCYBROStakings[i]] = true;
        }

        // Allow whitelisted addresses and admin to initiate minting
        transferWhitelist[address(0)] = true;
        mintersWhitelist[admin] = true;
        mintableByUsers = true;
    }

    /* ========== VIEW FUNCTIONS ========== */

    /**
     * @notice Calculates the total unlocked tokens available for a given user based on the vesting schedule.
     * @param user Address of the user
     * @return The total unlocked token amount
     */
    function getUnlockedAmount(address user) public view returns (uint256) {
        if (block.timestamp < tgeTimestamp) return 0;

        uint256 tgeAmount = allocations[user] * tgePercent / 100;
        if (block.timestamp < vestingStart) return tgeAmount;

        uint256 totalVestedAmount = allocations[user] - tgeAmount;
        uint256 elapsed = Math.min(block.timestamp - vestingStart, vestingDuration);
        uint256 vestedAmount = elapsed * totalVestedAmount / vestingDuration;

        return tgeAmount + vestedAmount;
    }

    /**
     * @notice Calculates the amount of tokens that can be immediately claimed by the user.
     * @param user Address of the user
     * @return The total claimable token amount
     */
    function getClaimableAmount(address user) public view returns (uint256) {
        return Math.min(getUnlockedAmount(user) - claimedAmount[user], balanceOf(user));
    }

    /* ========== EXTERNAL FUNCTIONS ========== */

    /**
     * @notice Allows a user to mint tokens for themselves with a signed message.
     * @param user Address of the user minting the tokens
     * @param totalBalance Total balance of tokens to allocate
     * @param signature ECDSA signature from authorized minter
     */
    function mint(address user, uint256 totalBalance, bytes memory signature) external {
        require(mintableByUsers, "CYBRO: mintable by users");
        address signer_ = keccak256(abi.encodePacked(user, totalBalance, address(this), block.chainid))
            .toEthSignedMessageHash().recover(signature);
        require(mintersWhitelist[signer_], "CYBRO: Invalid signature");
        _mint(user, totalBalance - allocations[user]);
        allocations[user] = totalBalance;
    }

    /**
     * @notice Allows whitelisted minters to mint tokens for multiple users.
     * @param users Array of user addresses
     * @param amounts Array of token amounts corresponding to each user
     */
    function mintFor(address[] memory users, uint256[] memory amounts) external {
        require(mintersWhitelist[msg.sender], "CYBRO: you are not in the whitelist");
        for (uint256 i = 0; i < users.length; i++) {
            _mint(users[i], amounts[i] - allocations[users[i]]);
            allocations[users[i]] = amounts[i];
        }
    }

    /**
     * @notice Allows the user to claim available vested tokens.
     */
    function claim() external {
        uint256 amount = getClaimableAmount(msg.sender);
        require(amount > 0, "CYBRO: amount must be gt zero");
        claimedAmount[msg.sender] += amount;
        _burn(msg.sender, amount);
        IERC20Metadata(cybro).safeTransfer(msg.sender, amount);
    }

    /* ========== EXTERNAL OWNER FUNCTIONS ========== */

    /**
     * @notice Adds an address to the transfer whitelist.
     * @param addr Address to be whitelisted
     */
    function addWhitelistedAddress(address addr) external onlyOwner {
        transferWhitelist[addr] = true;
    }

    /**
     * @notice Removes an address from the transfer whitelist.
     * @param addr Address to be removed from the whitelist
     */
    function removeWhitelistedAddress(address addr) external onlyOwner {
        transferWhitelist[addr] = false;
    }

    /**
     * @notice Adds a minter to the whitelist.
     * @param addr Minter address to be whitelisted
     */
    function addMinter(address addr) external onlyOwner {
        mintersWhitelist[addr] = true;
    }

    /**
     * @notice Removes a minter from the whitelist.
     * @param addr Minter address to be removed from the whitelist
     */
    function removeMinter(address addr) external onlyOwner {
        mintersWhitelist[addr] = false;
    }

    /**
     * @notice Sets the permission for users to mint tokens using a signature.
     * @param _mintableByUsers Boolean indicating if minted by users is allowed
     */
    function setMintableByUsers(bool _mintableByUsers) external onlyOwner {
        mintableByUsers = _mintableByUsers;
    }

    /* ========== INTERNAL FUNCTIONS ========== */

    /**
     * @dev Overrides the ERC20 transfer logic to enforce transfer whitelist restrictions.
     */
    function _update(address from, address to, uint256 value) internal override {
        if (!transferWhitelist[from] && !transferWhitelist[to]) {
            revert("CYBRO: not whitelisted");
        }
        super._update(from, to, value);
    }
}

File 7 of 17 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 8 of 17 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 9 of 17 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 10 of 17 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 11 of 17 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

File 12 of 17 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     * ```
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

File 13 of 17 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

File 14 of 17 : MessageHashUtils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

File 15 of 17 : draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 16 of 17 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 17 of 17 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/=lib/openzeppelin-contracts/",
    "@openzeppelin-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "@uniswap/v3-core/=lib/v3-core/",
    "@uniswap/v3-periphery/=lib/v3-periphery/",
    "@cryptoalgebra/integral-core/=lib/Algebra/src/core/",
    "@cryptoalgebra/integral-periphery/=lib/Algebra/src/periphery/",
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "ds-test/=lib/openzeppelin-contracts-upgradeable/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "v3-core/=lib/v3-core/contracts/",
    "v3-periphery/=lib/v3-periphery/contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "viaIR": false,
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_stakeToken","type":"address"},{"internalType":"uint256","name":"_lockTime","type":"uint256"},{"internalType":"uint32","name":"_percent","type":"uint32"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Staked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdrawn","type":"event"},{"inputs":[],"name":"claim","outputs":[{"internalType":"uint256","name":"reward","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"addr","type":"address"}],"name":"getRewardOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lockTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"percent","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_lockTime","type":"uint256"},{"internalType":"uint32","name":"_percent","type":"uint32"}],"name":"setLockTimeAndPercent","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_minBalance","type":"uint256"}],"name":"setMinBalance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"stake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stakeToken","outputs":[{"internalType":"contract IERC20Metadata","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalLocked","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"users","outputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"lastClaimTimestamp","type":"uint256"},{"internalType":"uint256","name":"unlockTimestamp","type":"uint256"},{"internalType":"uint256","name":"yearlyReward","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"force","type":"bool"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawFunds","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60a060405234801561001057600080fd5b5060405161133f38038061133f83398101604081905261002f9161010e565b83838383836001600160a01b03811661006257604051631e4fbdf760e01b81526000600482015260240160405180910390fd5b61006b816100a2565b506002919091556003805463ffffffff191663ffffffff9092169190911790556001600160a01b0316608052506101669350505050565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b80516001600160a01b038116811461010957600080fd5b919050565b6000806000806080858703121561012457600080fd5b61012d856100f2565b935061013b602086016100f2565b925060408501519150606085015163ffffffff8116811461015b57600080fd5b939692955090935050565b60805161118d6101b2600039600081816101560152818161035e01528181610624015281816107b2015281816108c901528181610991015281816109d00152610b12015261118d6000f3fe608060405234801561001057600080fd5b506004361061010b5760003560e01c80638da5cb5b116100a2578063a87430ba11610071578063a87430ba14610210578063c107532914610266578063c5bb875814610279578063c91d956c14610282578063f2fde38b1461029557600080fd5b80638da5cb5b146101c65780639313d505146101d7578063a694fc3a146101ea578063a810a54c146101fd57600080fd5b806351ed6a30116100de57806351ed6a3014610151578063568914121461019057806370ba111314610199578063715018a6146101be57600080fd5b806301bd0101146101105780630d668087146101255780633ccfd60b146101415780634e71d92d14610149575b600080fd5b61012361011e366004610efe565b6102a8565b005b61012e60025481565b6040519081526020015b60405180910390f35b6101236102d1565b61012e6102dd565b6101787f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b039091168152602001610138565b61012e60055481565b6003546101a99063ffffffff1681565b60405163ffffffff9091168152602001610138565b61012361041b565b6000546001600160a01b0316610178565b61012e6101e5366004610f53565b61042d565b6101236101f8366004610f6e565b6104d6565b61012361020b366004610f95565b610685565b61024661021e366004610f53565b6001602081905260009182526040909120805491810154600282015460039092015490919084565b604080519485526020850193909352918301526060820152608001610138565b610123610274366004610fb2565b610813565b61012e60045481565b610123610290366004610f6e565b610a89565b6101236102a3366004610f53565b610a96565b6102b0610ad4565b6002919091556003805463ffffffff191663ffffffff909216919091179055565b6102db6000610685565b565b33600081815260016020526040812090916102f79061042d565b426001830155915081156103455761030f3383610b01565b60405182815233907fd8138f8a3f377c5259ca548e70e4c2de94f129f5a11036a15b69513cba2b426a9060200160405180910390a25b506005546040516370a0823160e01b81523060048201527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906370a0823190602401602060405180830381865afa1580156103ad573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103d19190610fdc565b10156104185760405162461bcd60e51b8152602060048201526011602482015270435942524f3a20696e736f6c76656e637960781b60448201526064015b60405180910390fd5b90565b610423610ad4565b6102db6000610c85565b6001600160a01b03811660009081526001602081815260408084208151608081018352815481529381015492840183905260028101549184018290526003015460608401528391116104aa576104a582602001514261048c919061100b565b836020015184604001516104a0919061100b565b610cd5565b6104ad565b60005b90506301e133808183606001516104c4919061101e565b6104ce9190611035565b949350505050565b33600090815260016020526040902060045481546104f5908490611057565b101561054e5760405162461bcd60e51b815260206004820152602260248201527f435942524f3a20796f75206d7573742073656e64206d6f726520746f207374616044820152616b6560f01b606482015260840161040f565b6000821161059e5760405162461bcd60e51b815260206004820152601a60248201527f435942524f3a20616d6f756e74206d7573742062652067742030000000000000604482015260640161040f565b6105a66102dd565b506002546105b49042611057565b60028201558054829082906000906105cd908490611057565b90915550506003548154612710916105ed9163ffffffff9091169061101e565b6105f79190611035565b816003018190555081600560008282546106119190611057565b9091555061064c90506001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016333085610cef565b60405182815233907f9e71bc8eea02a63969f509818f2dafb9254532904319f9dbda79b67bd34a5f3d9060200160405180910390a25050565b33600090815260016020526040902060028101544210156106f65760405162461bcd60e51b815260206004820152602560248201527f435942524f3a20796f75206d7573742077616974206d6f726520746f20776974604482015264686472617760d81b606482015260840161040f565b80546107555760405162461bcd60e51b815260206004820152602860248201527f435942524f3a20796f7520686176656e277420616e797468696e6720666f7220604482015267776974686472617760c01b606482015260840161040f565b81610764576107626102dd565b505b80543360009081526001602081905260408220828155908101829055600281018290556003018190556005805483929061079f90849061100b565b909155506107d990506001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163383610d5c565b60405181815233907f7084f5476618d8e60b11ef0d7d3f06914655adb8793e28ff7f018d4c76d505d59060200160405180910390a2505050565b61081b610ad4565b6001600160a01b0382166108c757604051600090339047908381818185875af1925050503d806000811461086b576040519150601f19603f3d011682016040523d82523d6000602084013e610870565b606091505b50509050806108c15760405162461bcd60e51b815260206004820152601960248201527f435942524f3a206661696c656420746f2073656e642045544800000000000000604482015260640161040f565b506109b8565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614610984576040516370a0823160e01b815230600482015261097f9033906001600160a01b038516906370a0823190602401602060405180830381865afa15801561094a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061096e9190610fdc565b6001600160a01b0385169190610d5c565b6109b8565b6109b86001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163383610d5c565b6005546040516370a0823160e01b81523060048201527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906370a0823190602401602060405180830381865afa158015610a1f573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a439190610fdc565b1015610a855760405162461bcd60e51b8152602060048201526011602482015270435942524f3a20696e736f6c76656e637960781b604482015260640161040f565b5050565b610a91610ad4565b600455565b610a9e610ad4565b6001600160a01b038116610ac857604051631e4fbdf760e01b81526000600482015260240161040f565b610ad181610c85565b50565b6000546001600160a01b031633146102db5760405163118cdaa760e01b815233600482015260240161040f565b6040805160018082528183019092527f000000000000000000000000000000000000000000000000000000000000000091600091906020808301908036833750506040805160018082528183019092529293506000929150602080830190803683370190505090508482600081518110610b7d57610b7d61106a565b6001600160a01b0392831660209182029290920101526040516314aa40e760e21b81528682166004820152908416906352a9039c90602401602060405180830381865afa158015610bd2573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610bf69190610fdc565b610c009085611057565b81600081518110610c1357610c1361106a565b602090810291909101015260405163456faa0560e01b81526001600160a01b0384169063456faa0590610c4c9085908590600401611080565b600060405180830381600087803b158015610c6657600080fd5b505af1158015610c7a573d6000803e3d6000fd5b505050505050505050565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6000818310610ce45781610ce6565b825b90505b92915050565b6040516001600160a01b038481166024830152838116604483015260648201839052610d569186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b038381831617835250505050610d92565b50505050565b6040516001600160a01b03838116602483015260448201839052610d8d91859182169063a9059cbb90606401610d24565b505050565b6000610da76001600160a01b03841683610df5565b90508051600014158015610dcc575080806020019051810190610dca919061110b565b155b15610d8d57604051635274afe760e01b81526001600160a01b038416600482015260240161040f565b6060610ce68383600084600080856001600160a01b03168486604051610e1b9190611128565b60006040518083038185875af1925050503d8060008114610e58576040519150601f19603f3d011682016040523d82523d6000602084013e610e5d565b606091505b5091509150610e6d868383610e79565b925050505b9392505050565b606082610e8e57610e8982610ed5565b610e72565b8151158015610ea557506001600160a01b0384163b155b15610ece57604051639996b31560e01b81526001600160a01b038516600482015260240161040f565b5080610e72565b805115610ee55780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b60008060408385031215610f1157600080fd5b82359150602083013563ffffffff81168114610f2c57600080fd5b809150509250929050565b80356001600160a01b0381168114610f4e57600080fd5b919050565b600060208284031215610f6557600080fd5b610ce682610f37565b600060208284031215610f8057600080fd5b5035919050565b8015158114610ad157600080fd5b600060208284031215610fa757600080fd5b8135610e7281610f87565b60008060408385031215610fc557600080fd5b610fce83610f37565b946020939093013593505050565b600060208284031215610fee57600080fd5b5051919050565b634e487b7160e01b600052601160045260246000fd5b81810381811115610ce957610ce9610ff5565b8082028115828204841417610ce957610ce9610ff5565b60008261105257634e487b7160e01b600052601260045260246000fd5b500490565b80820180821115610ce957610ce9610ff5565b634e487b7160e01b600052603260045260246000fd5b6040808252835190820181905260009060208501906060840190835b818110156110c35783516001600160a01b031683526020938401939092019160010161109c565b50508381036020808601919091528551808352918101925085019060005b818110156110ff5782518452602093840193909201916001016110e1565b50919695505050505050565b60006020828403121561111d57600080fd5b8151610e7281610f87565b6000825160005b81811015611149576020818601810151858301520161112f565b50600092019182525091905056fea2646970667358221220d3b7b0389eefe0900cc1422b83f43b6cc1998a89619766b9bd77f6e12a00f84464736f6c634300081a00330000000000000000000000004739fefa6949fcb90f56a9d6defb3e8d3fd282f60000000000000000000000002f3af664ecdbc66f832e12f0df38180b2807e8a2000000000000000000000000000000000000000000000000000000000191004000000000000000000000000000000000000000000000000000000000000005dc

Deployed Bytecode

0x608060405234801561001057600080fd5b506004361061010b5760003560e01c80638da5cb5b116100a2578063a87430ba11610071578063a87430ba14610210578063c107532914610266578063c5bb875814610279578063c91d956c14610282578063f2fde38b1461029557600080fd5b80638da5cb5b146101c65780639313d505146101d7578063a694fc3a146101ea578063a810a54c146101fd57600080fd5b806351ed6a30116100de57806351ed6a3014610151578063568914121461019057806370ba111314610199578063715018a6146101be57600080fd5b806301bd0101146101105780630d668087146101255780633ccfd60b146101415780634e71d92d14610149575b600080fd5b61012361011e366004610efe565b6102a8565b005b61012e60025481565b6040519081526020015b60405180910390f35b6101236102d1565b61012e6102dd565b6101787f0000000000000000000000002f3af664ecdbc66f832e12f0df38180b2807e8a281565b6040516001600160a01b039091168152602001610138565b61012e60055481565b6003546101a99063ffffffff1681565b60405163ffffffff9091168152602001610138565b61012361041b565b6000546001600160a01b0316610178565b61012e6101e5366004610f53565b61042d565b6101236101f8366004610f6e565b6104d6565b61012361020b366004610f95565b610685565b61024661021e366004610f53565b6001602081905260009182526040909120805491810154600282015460039092015490919084565b604080519485526020850193909352918301526060820152608001610138565b610123610274366004610fb2565b610813565b61012e60045481565b610123610290366004610f6e565b610a89565b6101236102a3366004610f53565b610a96565b6102b0610ad4565b6002919091556003805463ffffffff191663ffffffff909216919091179055565b6102db6000610685565b565b33600081815260016020526040812090916102f79061042d565b426001830155915081156103455761030f3383610b01565b60405182815233907fd8138f8a3f377c5259ca548e70e4c2de94f129f5a11036a15b69513cba2b426a9060200160405180910390a25b506005546040516370a0823160e01b81523060048201527f0000000000000000000000002f3af664ecdbc66f832e12f0df38180b2807e8a26001600160a01b0316906370a0823190602401602060405180830381865afa1580156103ad573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103d19190610fdc565b10156104185760405162461bcd60e51b8152602060048201526011602482015270435942524f3a20696e736f6c76656e637960781b60448201526064015b60405180910390fd5b90565b610423610ad4565b6102db6000610c85565b6001600160a01b03811660009081526001602081815260408084208151608081018352815481529381015492840183905260028101549184018290526003015460608401528391116104aa576104a582602001514261048c919061100b565b836020015184604001516104a0919061100b565b610cd5565b6104ad565b60005b90506301e133808183606001516104c4919061101e565b6104ce9190611035565b949350505050565b33600090815260016020526040902060045481546104f5908490611057565b101561054e5760405162461bcd60e51b815260206004820152602260248201527f435942524f3a20796f75206d7573742073656e64206d6f726520746f207374616044820152616b6560f01b606482015260840161040f565b6000821161059e5760405162461bcd60e51b815260206004820152601a60248201527f435942524f3a20616d6f756e74206d7573742062652067742030000000000000604482015260640161040f565b6105a66102dd565b506002546105b49042611057565b60028201558054829082906000906105cd908490611057565b90915550506003548154612710916105ed9163ffffffff9091169061101e565b6105f79190611035565b816003018190555081600560008282546106119190611057565b9091555061064c90506001600160a01b037f0000000000000000000000002f3af664ecdbc66f832e12f0df38180b2807e8a216333085610cef565b60405182815233907f9e71bc8eea02a63969f509818f2dafb9254532904319f9dbda79b67bd34a5f3d9060200160405180910390a25050565b33600090815260016020526040902060028101544210156106f65760405162461bcd60e51b815260206004820152602560248201527f435942524f3a20796f75206d7573742077616974206d6f726520746f20776974604482015264686472617760d81b606482015260840161040f565b80546107555760405162461bcd60e51b815260206004820152602860248201527f435942524f3a20796f7520686176656e277420616e797468696e6720666f7220604482015267776974686472617760c01b606482015260840161040f565b81610764576107626102dd565b505b80543360009081526001602081905260408220828155908101829055600281018290556003018190556005805483929061079f90849061100b565b909155506107d990506001600160a01b037f0000000000000000000000002f3af664ecdbc66f832e12f0df38180b2807e8a2163383610d5c565b60405181815233907f7084f5476618d8e60b11ef0d7d3f06914655adb8793e28ff7f018d4c76d505d59060200160405180910390a2505050565b61081b610ad4565b6001600160a01b0382166108c757604051600090339047908381818185875af1925050503d806000811461086b576040519150601f19603f3d011682016040523d82523d6000602084013e610870565b606091505b50509050806108c15760405162461bcd60e51b815260206004820152601960248201527f435942524f3a206661696c656420746f2073656e642045544800000000000000604482015260640161040f565b506109b8565b7f0000000000000000000000002f3af664ecdbc66f832e12f0df38180b2807e8a26001600160a01b0316826001600160a01b031614610984576040516370a0823160e01b815230600482015261097f9033906001600160a01b038516906370a0823190602401602060405180830381865afa15801561094a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061096e9190610fdc565b6001600160a01b0385169190610d5c565b6109b8565b6109b86001600160a01b037f0000000000000000000000002f3af664ecdbc66f832e12f0df38180b2807e8a2163383610d5c565b6005546040516370a0823160e01b81523060048201527f0000000000000000000000002f3af664ecdbc66f832e12f0df38180b2807e8a26001600160a01b0316906370a0823190602401602060405180830381865afa158015610a1f573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a439190610fdc565b1015610a855760405162461bcd60e51b8152602060048201526011602482015270435942524f3a20696e736f6c76656e637960781b604482015260640161040f565b5050565b610a91610ad4565b600455565b610a9e610ad4565b6001600160a01b038116610ac857604051631e4fbdf760e01b81526000600482015260240161040f565b610ad181610c85565b50565b6000546001600160a01b031633146102db5760405163118cdaa760e01b815233600482015260240161040f565b6040805160018082528183019092527f0000000000000000000000002f3af664ecdbc66f832e12f0df38180b2807e8a291600091906020808301908036833750506040805160018082528183019092529293506000929150602080830190803683370190505090508482600081518110610b7d57610b7d61106a565b6001600160a01b0392831660209182029290920101526040516314aa40e760e21b81528682166004820152908416906352a9039c90602401602060405180830381865afa158015610bd2573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610bf69190610fdc565b610c009085611057565b81600081518110610c1357610c1361106a565b602090810291909101015260405163456faa0560e01b81526001600160a01b0384169063456faa0590610c4c9085908590600401611080565b600060405180830381600087803b158015610c6657600080fd5b505af1158015610c7a573d6000803e3d6000fd5b505050505050505050565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6000818310610ce45781610ce6565b825b90505b92915050565b6040516001600160a01b038481166024830152838116604483015260648201839052610d569186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b038381831617835250505050610d92565b50505050565b6040516001600160a01b03838116602483015260448201839052610d8d91859182169063a9059cbb90606401610d24565b505050565b6000610da76001600160a01b03841683610df5565b90508051600014158015610dcc575080806020019051810190610dca919061110b565b155b15610d8d57604051635274afe760e01b81526001600160a01b038416600482015260240161040f565b6060610ce68383600084600080856001600160a01b03168486604051610e1b9190611128565b60006040518083038185875af1925050503d8060008114610e58576040519150601f19603f3d011682016040523d82523d6000602084013e610e5d565b606091505b5091509150610e6d868383610e79565b925050505b9392505050565b606082610e8e57610e8982610ed5565b610e72565b8151158015610ea557506001600160a01b0384163b155b15610ece57604051639996b31560e01b81526001600160a01b038516600482015260240161040f565b5080610e72565b805115610ee55780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b60008060408385031215610f1157600080fd5b82359150602083013563ffffffff81168114610f2c57600080fd5b809150509250929050565b80356001600160a01b0381168114610f4e57600080fd5b919050565b600060208284031215610f6557600080fd5b610ce682610f37565b600060208284031215610f8057600080fd5b5035919050565b8015158114610ad157600080fd5b600060208284031215610fa757600080fd5b8135610e7281610f87565b60008060408385031215610fc557600080fd5b610fce83610f37565b946020939093013593505050565b600060208284031215610fee57600080fd5b5051919050565b634e487b7160e01b600052601160045260246000fd5b81810381811115610ce957610ce9610ff5565b8082028115828204841417610ce957610ce9610ff5565b60008261105257634e487b7160e01b600052601260045260246000fd5b500490565b80820180821115610ce957610ce9610ff5565b634e487b7160e01b600052603260045260246000fd5b6040808252835190820181905260009060208501906060840190835b818110156110c35783516001600160a01b031683526020938401939092019160010161109c565b50508381036020808601919091528551808352918101925085019060005b818110156110ff5782518452602093840193909201916001016110e1565b50919695505050505050565b60006020828403121561111d57600080fd5b8151610e7281610f87565b6000825160005b81811015611149576020818601810151858301520161112f565b50600092019182525091905056fea2646970667358221220d3b7b0389eefe0900cc1422b83f43b6cc1998a89619766b9bd77f6e12a00f84464736f6c634300081a0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000004739fefa6949fcb90f56a9d6defb3e8d3fd282f60000000000000000000000002f3af664ecdbc66f832e12f0df38180b2807e8a2000000000000000000000000000000000000000000000000000000000191004000000000000000000000000000000000000000000000000000000000000005dc

-----Decoded View---------------
Arg [0] : _owner (address): 0x4739fEFA6949fcB90F56a9D6defb3e8d3Fd282F6
Arg [1] : _stakeToken (address): 0x2F3aF664Ecdbc66F832E12F0Df38180B2807E8A2
Arg [2] : _lockTime (uint256): 26280000
Arg [3] : _percent (uint32): 1500

-----Encoded View---------------
4 Constructor Arguments found :
Arg [0] : 0000000000000000000000004739fefa6949fcb90f56a9d6defb3e8d3fd282f6
Arg [1] : 0000000000000000000000002f3af664ecdbc66f832e12f0df38180b2807e8a2
Arg [2] : 0000000000000000000000000000000000000000000000000000000001910040
Arg [3] : 00000000000000000000000000000000000000000000000000000000000005dc


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.