More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 194,350 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Withdraw | 10093035 | 32 mins ago | IN | 0 ETH | 0.00000182 | ||||
Deposit | 10091942 | 1 hr ago | IN | 0 ETH | 0.00000204 | ||||
Withdraw | 10086925 | 3 hrs ago | IN | 0 ETH | 0.00000419 | ||||
Withdraw | 10086763 | 4 hrs ago | IN | 0 ETH | 0.0000038 | ||||
Withdraw | 10085651 | 4 hrs ago | IN | 0 ETH | 0.00000177 | ||||
Withdraw | 10085551 | 4 hrs ago | IN | 0 ETH | 0.0000017 | ||||
Withdraw | 10085530 | 4 hrs ago | IN | 0 ETH | 0.00000144 | ||||
Withdraw | 10085475 | 4 hrs ago | IN | 0 ETH | 0.00000166 | ||||
Withdraw | 10084969 | 5 hrs ago | IN | 0 ETH | 0.00000126 | ||||
Withdraw | 10084509 | 5 hrs ago | IN | 0 ETH | 0.00000112 | ||||
Withdraw | 10082239 | 6 hrs ago | IN | 0 ETH | 0.00000087 | ||||
Withdraw | 10082166 | 6 hrs ago | IN | 0 ETH | 0.00000157 | ||||
Withdraw | 10079112 | 8 hrs ago | IN | 0 ETH | 0.00000165 | ||||
Withdraw | 10078566 | 8 hrs ago | IN | 0 ETH | 0.00000111 | ||||
Withdraw | 10075918 | 10 hrs ago | IN | 0 ETH | 0.00000148 | ||||
Withdraw | 10075265 | 10 hrs ago | IN | 0 ETH | 0.00000117 | ||||
Withdraw | 10074192 | 11 hrs ago | IN | 0 ETH | 0.00000177 | ||||
Deposit | 10073094 | 11 hrs ago | IN | 0 ETH | 0.00000121 | ||||
Withdraw | 10071161 | 12 hrs ago | IN | 0 ETH | 0.00000178 | ||||
Withdraw | 10071029 | 12 hrs ago | IN | 0 ETH | 0.00000215 | ||||
Deposit | 10070210 | 13 hrs ago | IN | 0 ETH | 0.00000215 | ||||
Withdraw | 10061146 | 18 hrs ago | IN | 0 ETH | 0.00000142 | ||||
Deposit | 10060024 | 18 hrs ago | IN | 0 ETH | 0.0000016 | ||||
Withdraw | 10058143 | 19 hrs ago | IN | 0 ETH | 0.00000108 | ||||
Deposit | 10058109 | 19 hrs ago | IN | 0 ETH | 0.00000129 |
Latest 3 internal transactions
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
213624 | 228 days ago | Contract Creation | 0 ETH | |||
213624 | 228 days ago | Contract Creation | 0 ETH | |||
213624 | 228 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
JuiceLendingPool
Compiler Version
v0.8.24+commit.e11b9ed9
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import { SafeERC20, IERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "../lendingPool/LendingPool.sol"; import { mulDiv } from "@prb/math/src/Common.sol"; import "./JuiceModule.sol"; import "../external/blast/IERC20Rebasing.sol"; import "../libraries/Errors.sol"; import "./periphery/BlastGas.sol"; import "./periphery/BlastPoints.sol"; /// @title Juice Lending Pool /// @notice This contract extends LendingPool to account for Blast native features - USDB yield and gas refunds. contract JuiceLendingPool is LendingPool, JuiceModule, BlastGas, BlastPoints { using SafeERC20 for IERC20; uint256 public MINIMUM_COMPOUND_AMOUNT = 1e6; struct InitParams { address interestRateStrategy; address blastPointsOperator; uint256 minimumOpenBorrow; bool isAutoCompounding; } bool public isAutoCompounding; constructor( address protocolGovernor_, InitParams memory params ) BlastGas(protocolGovernor_) BlastPoints(protocolGovernor_, params.blastPointsOperator) JuiceModule(protocolGovernor_) LendingPool( protocolGovernor_, LendingPool.BaseInitParams({ interestRateStrategy: params.interestRateStrategy, minimumOpenBorrow: params.minimumOpenBorrow }) ) { isAutoCompounding = params.isAutoCompounding; IERC20Rebasing(address(reserve.asset)).configure(YieldMode.CLAIMABLE); } function toggleAutoCompounding() public onlyOwner { isAutoCompounding = !isAutoCompounding; } function getNormalizedIncome() public view override returns (UD60x18) { uint256 timestamp = reserve.lastUpdateTimestamp; // slither-disable-next-line incorrect-equality if (timestamp == block.timestamp) { return reserve.liquidityIndex; } uint256 claimableYield = IERC20Rebasing(address(reserve.asset)).getClaimableAmount(address(this)); UD60x18 pendingUsdbYield = ud(reserve.assetBalance + claimableYield).div(ud(reserve.assetBalance)); return MathUtils.calculateCompoundedInterest(reserve.liquidityRate, timestamp).mul(reserve.liquidityIndex).mul( pendingUsdbYield ); } /// @notice Accrue USDB yield earned from idle reserve assets and distribute it to depositors. function compound() external nonReentrant returns (uint256 earned) { earned = _compound(); } /// @notice Pull USDB yield from some address and distribute it to depositors. function sendYield(uint256 amount) external onlyLendYieldSender { uint256 reserveBalanceBefore = reserve.assetBalance; IERC20(reserve.asset).safeTransferFrom(msg.sender, address(this), amount); _accrueYield(reserveBalanceBefore, amount); } function _compound() internal returns (uint256 earned) { IERC20Rebasing usdb = IERC20Rebasing(address(reserve.asset)); earned = usdb.getClaimableAmount(address(this)); // Avoid compounding dust. if (earned >= MINIMUM_COMPOUND_AMOUNT) { uint256 reserveBalanceBefore = reserve.assetBalance; earned = usdb.claim(address(this), earned); _accrueYield(reserveBalanceBefore, earned); } } function _beforeAction() internal override { _accrueInterest(); if (isAutoCompounding) { _compound(); } } /// @notice Accrues yield into liquidityIndex. function _accrueYield(uint256 assetBalanceBefore, uint256 yieldClaimed) internal { reserve.assetBalance += yieldClaimed; reserve.liquidityIndex = (ud(reserve.assetBalance).mul(reserve.liquidityIndex)).div(ud(assetBalanceBefore)); emit LiquidityIndexUpdated(reserve.liquidityIndex); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol) pragma solidity ^0.8.20; import {Ownable} from "./Ownable.sol"; /** * @dev Contract module which provides access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is specified at deployment time in the constructor for `Ownable`. This * can later be changed with {transferOwnership} and {acceptOwnership}. * * This module is used through inheritance. It will make available all functions * from parent (Ownable). */ abstract contract Ownable2Step is Ownable { address private _pendingOwner; event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner); /** * @dev Returns the address of the pending owner. */ function pendingOwner() public view virtual returns (address) { return _pendingOwner; } /** * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one. * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual override onlyOwner { _pendingOwner = newOwner; emit OwnershipTransferStarted(owner(), newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner. * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual override { delete _pendingOwner; super._transferOwnership(newOwner); } /** * @dev The new owner accepts the ownership transfer. */ function acceptOwnership() public virtual { address sender = _msgSender(); if (pendingOwner() != sender) { revert OwnableUnauthorizedAccount(sender); } _transferOwnership(sender); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC20Permit} from "../extensions/IERC20Permit.sol"; import {Address} from "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev An operation with an ERC20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data); if (returndata.length != 0 && !abi.decode(returndata, (bool))) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { bool private _paused; /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); /** * @dev The operation failed because the contract is paused. */ error EnforcedPause(); /** * @dev The operation failed because the contract is not paused. */ error ExpectedPause(); /** * @dev Initializes the contract in unpaused state. */ constructor() { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { if (paused()) { revert EnforcedPause(); } } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { if (!paused()) { revert ExpectedPause(); } } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.20; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ```solidity * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position is the index of the value in the `values` array plus 1. // Position 0 is used to mean a value is not in the set. mapping(bytes32 value => uint256) _positions; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._positions[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We cache the value's position to prevent multiple reads from the same storage slot uint256 position = set._positions[value]; if (position != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 valueIndex = position - 1; uint256 lastIndex = set._values.length - 1; if (valueIndex != lastIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the lastValue to the index where the value to delete is set._values[valueIndex] = lastValue; // Update the tracked position of the lastValue (that was just moved) set._positions[lastValue] = position; } // Delete the slot where the moved value was stored set._values.pop(); // Delete the tracked position for the deleted slot delete set._positions[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._positions[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; // Common.sol // // Common mathematical functions used in both SD59x18 and UD60x18. Note that these global functions do not // always operate with SD59x18 and UD60x18 numbers. /*////////////////////////////////////////////////////////////////////////// CUSTOM ERRORS //////////////////////////////////////////////////////////////////////////*/ /// @notice Thrown when the resultant value in {mulDiv} overflows uint256. error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator); /// @notice Thrown when the resultant value in {mulDiv18} overflows uint256. error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y); /// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`. error PRBMath_MulDivSigned_InputTooSmall(); /// @notice Thrown when the resultant value in {mulDivSigned} overflows int256. error PRBMath_MulDivSigned_Overflow(int256 x, int256 y); /*////////////////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////////////////*/ /// @dev The maximum value a uint128 number can have. uint128 constant MAX_UINT128 = type(uint128).max; /// @dev The maximum value a uint40 number can have. uint40 constant MAX_UINT40 = type(uint40).max; /// @dev The unit number, which the decimal precision of the fixed-point types. uint256 constant UNIT = 1e18; /// @dev The unit number inverted mod 2^256. uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant /// bit in the binary representation of `UNIT`. uint256 constant UNIT_LPOTD = 262144; /*////////////////////////////////////////////////////////////////////////// FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function exp2(uint256 x) pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points: // // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65. // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1, // we know that `x & 0xFF` is also 1. if (x & 0xFF00000000000000 > 0) { if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } } if (x & 0xFF000000000000 > 0) { if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } } if (x & 0xFF0000000000 > 0) { if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } } if (x & 0xFF00000000 > 0) { if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } } if (x & 0xFF000000 > 0) { if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } } if (x & 0xFF0000 > 0) { if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } } if (x & 0xFF00 > 0) { if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } } if (x & 0xFF > 0) { if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } } // In the code snippet below, two operations are executed simultaneously: // // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1 // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192. // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format. // // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the, // integer part, $2^n$. result *= UNIT; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first 1 in the binary representation of x. /// /// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set /// /// Each step in this implementation is equivalent to this high-level code: /// /// ```solidity /// if (x >= 2 ** 128) { /// x >>= 128; /// result += 128; /// } /// ``` /// /// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here: /// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948 /// /// The Yul instructions used below are: /// /// - "gt" is "greater than" /// - "or" is the OR bitwise operator /// - "shl" is "shift left" /// - "shr" is "shift right" /// /// @param x The uint256 number for which to find the index of the most significant bit. /// @return result The index of the most significant bit as a uint256. /// @custom:smtchecker abstract-function-nondet function msb(uint256 x) pure returns (uint256 result) { // 2^128 assembly ("memory-safe") { let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^64 assembly ("memory-safe") { let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^32 assembly ("memory-safe") { let factor := shl(5, gt(x, 0xFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^16 assembly ("memory-safe") { let factor := shl(4, gt(x, 0xFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^8 assembly ("memory-safe") { let factor := shl(3, gt(x, 0xFF)) x := shr(factor, x) result := or(result, factor) } // 2^4 assembly ("memory-safe") { let factor := shl(2, gt(x, 0xF)) x := shr(factor, x) result := or(result, factor) } // 2^2 assembly ("memory-safe") { let factor := shl(1, gt(x, 0x3)) x := shr(factor, x) result := or(result, factor) } // 2^1 // No need to shift x any more. assembly ("memory-safe") { let factor := gt(x, 0x1) result := or(result, factor) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - The denominator must not be zero. /// - The result must fit in uint256. /// /// @param x The multiplicand as a uint256. /// @param y The multiplier as a uint256. /// @param denominator The divisor as a uint256. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { return prod0 / denominator; } } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath_MulDiv_Overflow(x, y, denominator); } //////////////////////////////////////////////////////////////////////////// // 512 by 256 division //////////////////////////////////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly ("memory-safe") { // Compute remainder using the mulmod Yul instruction. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512-bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } unchecked { // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow // because the denominator cannot be zero at this point in the function execution. The result is always >= 1. // For more detail, see https://cs.stackexchange.com/q/138556/92363. uint256 lpotdod = denominator & (~denominator + 1); uint256 flippedLpotdod; assembly ("memory-safe") { // Factor powers of two out of denominator. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one. // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits. // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693 flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * flippedLpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; } } /// @notice Calculates x*y÷1e18 with 512-bit precision. /// /// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18. /// /// Notes: /// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}. /// - The result is rounded toward zero. /// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations: /// /// $$ /// \begin{cases} /// x * y = MAX\_UINT256 * UNIT \\ /// (x * y) \% UNIT \geq \frac{UNIT}{2} /// \end{cases} /// $$ /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - The result must fit in uint256. /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 == 0) { unchecked { return prod0 / UNIT; } } if (prod1 >= UNIT) { revert PRBMath_MulDiv18_Overflow(x, y); } uint256 remainder; assembly ("memory-safe") { remainder := mulmod(x, y, UNIT) result := mul( or( div(sub(prod0, remainder), UNIT_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1)) ), UNIT_INVERSE ) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - None of the inputs can be `type(int256).min`. /// - The result must fit in int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. /// @custom:smtchecker abstract-function-nondet function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath_MulDivSigned_InputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 xAbs; uint256 yAbs; uint256 dAbs; unchecked { xAbs = x < 0 ? uint256(-x) : uint256(x); yAbs = y < 0 ? uint256(-y) : uint256(y); dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of x*y÷denominator. The result must fit in int256. uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs); if (resultAbs > uint256(type(int256).max)) { revert PRBMath_MulDivSigned_Overflow(x, y); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly ("memory-safe") { // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement. sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs. // If there are, the result should be negative. Otherwise, it should be positive. unchecked { result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - If x is not a perfect square, the result is rounded down. /// - Credits to OpenZeppelin for the explanations in comments below. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function sqrt(uint256 x) pure returns (uint256 result) { if (x == 0) { return 0; } // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x. // // We know that the "msb" (most significant bit) of x is a power of 2 such that we have: // // $$ // msb(x) <= x <= 2*msb(x)$ // $$ // // We write $msb(x)$ as $2^k$, and we get: // // $$ // k = log_2(x) // $$ // // Thus, we can write the initial inequality as: // // $$ // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\ // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\ // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1} // $$ // // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit. uint256 xAux = uint256(x); result = 1; if (xAux >= 2 ** 128) { xAux >>= 128; result <<= 64; } if (xAux >= 2 ** 64) { xAux >>= 64; result <<= 32; } if (xAux >= 2 ** 32) { xAux >>= 32; result <<= 16; } if (xAux >= 2 ** 16) { xAux >>= 16; result <<= 8; } if (xAux >= 2 ** 8) { xAux >>= 8; result <<= 4; } if (xAux >= 2 ** 4) { xAux >>= 4; result <<= 2; } if (xAux >= 2 ** 2) { result <<= 1; } // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of // precision into the expected uint128 result. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // If x is not a perfect square, round the result toward zero. uint256 roundedResult = x / result; if (result >= roundedResult) { result = roundedResult; } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ██╗ ██╗██████╗ ██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗ ██║ ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗ ██║ ██║██║ ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝ ██║ ██║██║ ██║██╔═══██╗████╔╝██║ ██╔██╗ ██║██╔══██╗ ╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./ud60x18/Casting.sol"; import "./ud60x18/Constants.sol"; import "./ud60x18/Conversions.sol"; import "./ud60x18/Errors.sol"; import "./ud60x18/Helpers.sol"; import "./ud60x18/Math.sol"; import "./ud60x18/ValueType.sol";
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as CastingErrors; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD1x18 } from "./ValueType.sol"; /// @notice Casts an SD1x18 number into SD59x18. /// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18. function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(SD1x18.unwrap(x))); } /// @notice Casts an SD1x18 number into UD2x18. /// - x must be positive. function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x); } result = UD2x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x); } result = UD60x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD1x18 x) pure returns (uint256 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x); } result = uint256(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint128. /// @dev Requirements: /// - x must be positive. function intoUint128(SD1x18 x) pure returns (uint128 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x); } result = uint128(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD1x18 x) pure returns (uint40 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x); } if (xInt > int64(uint64(Common.MAX_UINT40))) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x); } result = uint40(uint64(xInt)); } /// @notice Alias for {wrap}. function sd1x18(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); } /// @notice Unwraps an SD1x18 number into int64. function unwrap(SD1x18 x) pure returns (int64 result) { result = SD1x18.unwrap(x); } /// @notice Wraps an int64 number into SD1x18. function wrap(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @dev Euler's number as an SD1x18 number. SD1x18 constant E = SD1x18.wrap(2_718281828459045235); /// @dev The maximum value an SD1x18 number can have. int64 constant uMAX_SD1x18 = 9_223372036854775807; SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18); /// @dev The maximum value an SD1x18 number can have. int64 constant uMIN_SD1x18 = -9_223372036854775808; SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18); /// @dev PI as an SD1x18 number. SD1x18 constant PI = SD1x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD1x18. SD1x18 constant UNIT = SD1x18.wrap(1e18); int256 constant uUNIT = 1e18;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18. error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18. error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128. error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256. error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract /// storage. type SD1x18 is int64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD59x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD1x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Casts an SD59x18 number into int256. /// @dev This is basically a functional alias for {unwrap}. function intoInt256(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Casts an SD59x18 number into SD1x18. /// @dev Requirements: /// - x must be greater than or equal to `uMIN_SD1x18`. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < uMIN_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x); } if (xInt > uMAX_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xInt)); } /// @notice Casts an SD59x18 number into UD2x18. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x); } if (xInt > int256(uint256(uMAX_UD2x18))) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(uint256(xInt))); } /// @notice Casts an SD59x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x); } result = UD60x18.wrap(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD59x18 x) pure returns (uint256 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x); } result = uint256(xInt); } /// @notice Casts an SD59x18 number into uint128. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UINT128`. function intoUint128(SD59x18 x) pure returns (uint128 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x); } if (xInt > int256(uint256(MAX_UINT128))) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x); } result = uint128(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD59x18 x) pure returns (uint40 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x); } if (xInt > int256(uint256(MAX_UINT40))) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x); } result = uint40(uint256(xInt)); } /// @notice Alias for {wrap}. function sd(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Alias for {wrap}. function sd59x18(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Unwraps an SD59x18 number into int256. function unwrap(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Wraps an int256 number into SD59x18. function wrap(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as an SD59x18 number. SD59x18 constant E = SD59x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. int256 constant uEXP_MAX_INPUT = 133_084258667509499440; SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. int256 constant uEXP2_MAX_INPUT = 192e18 - 1; SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. int256 constant uHALF_UNIT = 0.5e18; SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as an SD59x18 number. int256 constant uLOG2_10 = 3_321928094887362347; SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as an SD59x18 number. int256 constant uLOG2_E = 1_442695040888963407; SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E); /// @dev The maximum value an SD59x18 number can have. int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18); /// @dev The maximum whole value an SD59x18 number can have. int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18); /// @dev The minimum value an SD59x18 number can have. int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18); /// @dev The minimum whole value an SD59x18 number can have. int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18); /// @dev PI as an SD59x18 number. SD59x18 constant PI = SD59x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD59x18. int256 constant uUNIT = 1e18; SD59x18 constant UNIT = SD59x18.wrap(1e18); /// @dev The unit number squared. int256 constant uUNIT_SQUARED = 1e36; SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED); /// @dev Zero as an SD59x18 number. SD59x18 constant ZERO = SD59x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; /// @notice Thrown when taking the absolute value of `MIN_SD59x18`. error PRBMath_SD59x18_Abs_MinSD59x18(); /// @notice Thrown when ceiling a number overflows SD59x18. error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMath_SD59x18_Convert_Overflow(int256 x); /// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMath_SD59x18_Convert_Underflow(int256 x); /// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`. error PRBMath_SD59x18_Div_InputTooSmall(); /// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18. error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x); /// @notice Thrown when flooring a number underflows SD59x18. error PRBMath_SD59x18_Floor_Underflow(SD59x18 x); /// @notice Thrown when taking the geometric mean of two numbers and their product is negative. error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18. error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18. error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256. error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x); /// @notice Thrown when taking the logarithm of a number less than or equal to zero. error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x); /// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`. error PRBMath_SD59x18_Mul_InputTooSmall(); /// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when raising a number to a power and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y); /// @notice Thrown when taking the square root of a negative number. error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x); /// @notice Thrown when the calculating the square root overflows SD59x18. error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the SD59x18 type. function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) { return wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal (=) operation in the SD59x18 type. function eq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the SD59x18 type. function gt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type. function gte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the SD59x18 type. function isZero(SD59x18 x) pure returns (bool result) { result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the SD59x18 type. function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the SD59x18 type. function lt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type. function lte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the unchecked modulo operation (%) in the SD59x18 type. function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the SD59x18 type. function neq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the SD59x18 type. function not(SD59x18 x) pure returns (SD59x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the SD59x18 type. function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the SD59x18 type. function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the SD59x18 type. function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the checked unary minus operation (-) in the SD59x18 type. function unary(SD59x18 x) pure returns (SD59x18 result) { result = wrap(-x.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the SD59x18 type. function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type. function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type. function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) { unchecked { result = wrap(-x.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the SD59x18 type. function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_SD59x18, uMAX_WHOLE_SD59x18, uMIN_SD59x18, uMIN_WHOLE_SD59x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { wrap } from "./Helpers.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Calculates the absolute value of x. /// /// @dev Requirements: /// - x must be greater than `MIN_SD59x18`. /// /// @param x The SD59x18 number for which to calculate the absolute value. /// @param result The absolute value of x as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function abs(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Abs_MinSD59x18(); } result = xInt < 0 ? wrap(-xInt) : x; } /// @notice Calculates the arithmetic average of x and y. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The arithmetic average as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); unchecked { // This operation is equivalent to `x / 2 + y / 2`, and it can never overflow. int256 sum = (xInt >> 1) + (yInt >> 1); if (sum < 0) { // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right // rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`. assembly ("memory-safe") { result := add(sum, and(or(xInt, yInt), 1)) } } else { // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting. result = wrap(sum + (xInt & yInt & 1)); } } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt > uMAX_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Ceil_Overflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt > 0) { resultInt += uUNIT; } result = wrap(resultInt); } } } /// @notice Divides two SD59x18 numbers, returning a new SD59x18 number. /// /// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute /// values separately. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// - None of the inputs can be `MIN_SD59x18`. /// - The denominator must not be zero. /// - The result must fit in SD59x18. /// /// @param x The numerator as an SD59x18 number. /// @param y The denominator as an SD59x18 number. /// @param result The quotient as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Div_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Div_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}. /// /// Requirements: /// - Refer to the requirements in {exp2}. /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xInt > uEXP_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. int256 doubleUnitProduct = xInt * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method using the following formula: /// /// $$ /// 2^{-x} = \frac{1}{2^x} /// $$ /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Notes: /// - If x is less than -59_794705707972522261, the result is zero. /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in SD59x18. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { // The inverse of any number less than this is truncated to zero. if (xInt < -59_794705707972522261) { return ZERO; } unchecked { // Inline the fixed-point inversion to save gas. result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap()); } } else { // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xInt > uEXP2_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = uint256((xInt << 64) / uUNIT); // It is safe to cast the result to int256 due to the checks above. result = wrap(int256(Common.exp2(x_192x64))); } } } /// @notice Yields the greatest whole number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to `MIN_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to floor. /// @param result The greatest whole number less than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function floor(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < uMIN_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Floor_Underflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt < 0) { resultInt -= uUNIT; } result = wrap(resultInt); } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right. /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The SD59x18 number to get the fractional part of. /// @param result The fractional part of x as an SD59x18 number. function frac(SD59x18 x) pure returns (SD59x18 result) { result = wrap(x.unwrap() % uUNIT); } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x * y must fit in SD59x18. /// - x * y must not be negative, since complex numbers are not supported. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == 0 || yInt == 0) { return ZERO; } unchecked { // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it. int256 xyInt = xInt * yInt; if (xyInt / xInt != yInt) { revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y); } // The product must not be negative, since complex numbers are not supported. if (xyInt < 0) { revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. uint256 resultUint = Common.sqrt(uint256(xyInt)); result = wrap(int256(resultUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The SD59x18 number for which to calculate the inverse. /// @return result The inverse as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function inv(SD59x18 x) pure returns (SD59x18 result) { result = wrap(uUNIT_SQUARED / x.unwrap()); } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ln(SD59x18 x) pure returns (SD59x18 result) { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~195_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the common logarithm. /// @return result The common logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log10(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } default { result := uMAX_SD59x18 } } if (result.unwrap() == uMAX_SD59x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation. /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The SD59x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt <= 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } unchecked { int256 sign; if (xInt >= uUNIT) { sign = 1; } else { sign = -1; // Inline the fixed-point inversion to save gas. xInt = uUNIT_SQUARED / xInt; } // Calculate the integer part of the logarithm. uint256 n = Common.msb(uint256(xInt / uUNIT)); // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1. int256 resultInt = int256(n) * uUNIT; // Calculate $y = x * 2^{-n}$. int256 y = xInt >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultInt * sign); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. int256 DOUBLE_UNIT = 2e18; for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultInt = resultInt + delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } resultInt *= sign; result = wrap(resultInt); } } /// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number. /// /// @dev Notes: /// - Refer to the notes in {Common.mulDiv18}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv18}. /// - None of the inputs can be `MIN_SD59x18`. /// - The result must fit in SD59x18. /// /// @param x The multiplicand as an SD59x18 number. /// @param y The multiplier as an SD59x18 number. /// @return result The product as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Mul_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv18(xAbs, yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Raises x to the power of y using the following formula: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}, {log2}, and {mul}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as an SD59x18 number. /// @param y Exponent to raise x to, as an SD59x18 number /// @return result x raised to power y, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xInt == 0) { return yInt == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xInt == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yInt == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yInt == uUNIT) { return x; } // Calculate the result using the formula. result = exp2(mul(log2(x), y)); } /// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {abs} and {Common.mulDiv18}. /// - The result must fit in SD59x18. /// /// @param x The base as an SD59x18 number. /// @param y The exponent as a uint256. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) { uint256 xAbs = uint256(abs(x).unwrap()); // Calculate the first iteration of the loop in advance. uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT); // Equivalent to `for(y /= 2; y > 0; y /= 2)`. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = Common.mulDiv18(xAbs, xAbs); // Equivalent to `y % 2 == 1`. if (yAux & 1 > 0) { resultAbs = Common.mulDiv18(resultAbs, xAbs); } } // The result must fit in SD59x18. if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y); } unchecked { // Is the base negative and the exponent odd? If yes, the result should be negative. int256 resultInt = int256(resultAbs); bool isNegative = x.unwrap() < 0 && y & 1 == 1; if (isNegative) { resultInt = -resultInt; } result = wrap(resultInt); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - Only the positive root is returned. /// - The result is rounded toward zero. /// /// Requirements: /// - x cannot be negative, since complex numbers are not supported. /// - x must be less than `MAX_SD59x18 / UNIT`. /// /// @param x The SD59x18 number for which to calculate the square root. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x); } if (xInt > uMAX_SD59x18 / uUNIT) { revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x); } unchecked { // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers. // In this case, the two numbers are both the square root. uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT)); result = wrap(int256(resultUint)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int256. type SD59x18 is int256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoInt256, Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Math.abs, Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.log10, Math.log2, Math.ln, Math.mul, Math.pow, Math.powu, Math.sqrt } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.uncheckedUnary, Helpers.xor } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the SD59x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.or as |, Helpers.sub as -, Helpers.unary as -, Helpers.xor as ^ } for SD59x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { UD2x18 } from "./ValueType.sol"; /// @notice Casts a UD2x18 number into SD1x18. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(uMAX_SD1x18)) { revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xUint)); } /// @notice Casts a UD2x18 number into SD59x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18. function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x)))); } /// @notice Casts a UD2x18 number into UD60x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18. function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) { result = UD60x18.wrap(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint128. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128. function intoUint128(UD2x18 x) pure returns (uint128 result) { result = uint128(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint256. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256. function intoUint256(UD2x18 x) pure returns (uint256 result) { result = uint256(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD2x18 x) pure returns (uint40 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(Common.MAX_UINT40)) { revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud2x18(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); } /// @notice Unwrap a UD2x18 number into uint64. function unwrap(UD2x18 x) pure returns (uint64 result) { result = UD2x18.unwrap(x); } /// @notice Wraps a uint64 number into UD2x18. function wrap(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @dev Euler's number as a UD2x18 number. UD2x18 constant E = UD2x18.wrap(2_718281828459045235); /// @dev The maximum value a UD2x18 number can have. uint64 constant uMAX_UD2x18 = 18_446744073709551615; UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18); /// @dev PI as a UD2x18 number. UD2x18 constant PI = UD2x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD2x18. uint256 constant uUNIT = 1e18; UD2x18 constant UNIT = UD2x18.wrap(1e18);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18. error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x); /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40. error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract /// storage. type UD2x18 is uint64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoSD59x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for UD2x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_SD59x18 } from "../sd59x18/Constants.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Casts a UD60x18 number into SD1x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(int256(uMAX_SD1x18))) { revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(uint64(xUint))); } /// @notice Casts a UD60x18 number into UD2x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uMAX_UD2x18) { revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(xUint)); } /// @notice Casts a UD60x18 number into SD59x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD59x18`. function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(uMAX_SD59x18)) { revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x); } result = SD59x18.wrap(int256(xUint)); } /// @notice Casts a UD60x18 number into uint128. /// @dev This is basically an alias for {unwrap}. function intoUint256(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Casts a UD60x18 number into uint128. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT128`. function intoUint128(UD60x18 x) pure returns (uint128 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT128) { revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x); } result = uint128(xUint); } /// @notice Casts a UD60x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD60x18 x) pure returns (uint40 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT40) { revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Alias for {wrap}. function ud60x18(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Unwraps a UD60x18 number into uint256. function unwrap(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Wraps a uint256 number into the UD60x18 value type. function wrap(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as a UD60x18 number. UD60x18 constant E = UD60x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. uint256 constant uEXP_MAX_INPUT = 133_084258667509499440; UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. uint256 constant uEXP2_MAX_INPUT = 192e18 - 1; UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. uint256 constant uHALF_UNIT = 0.5e18; UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as a UD60x18 number. uint256 constant uLOG2_10 = 3_321928094887362347; UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as a UD60x18 number. uint256 constant uLOG2_E = 1_442695040888963407; UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E); /// @dev The maximum value a UD60x18 number can have. uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18); /// @dev The maximum whole value a UD60x18 number can have. uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18); /// @dev PI as a UD60x18 number. UD60x18 constant PI = UD60x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD60x18. uint256 constant uUNIT = 1e18; UD60x18 constant UNIT = UD60x18.wrap(uUNIT); /// @dev The unit number squared. uint256 constant uUNIT_SQUARED = 1e36; UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED); /// @dev Zero as a UD60x18 number. UD60x18 constant ZERO = UD60x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { uMAX_UD60x18, uUNIT } from "./Constants.sol"; import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`. /// @dev The result is rounded toward zero. /// @param x The UD60x18 number to convert. /// @return result The same number in basic integer form. function convert(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x) / uUNIT; } /// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`. /// /// @dev Requirements: /// - x must be less than or equal to `MAX_UD60x18 / UNIT`. /// /// @param x The basic integer to convert. /// @param result The same number converted to UD60x18. function convert(uint256 x) pure returns (UD60x18 result) { if (x > uMAX_UD60x18 / uUNIT) { revert PRBMath_UD60x18_Convert_Overflow(x); } unchecked { result = UD60x18.wrap(x * uUNIT); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; /// @notice Thrown when ceiling a number overflows UD60x18. error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18. error PRBMath_UD60x18_Convert_Overflow(uint256 x); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18. error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18. error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x); /// @notice Thrown when taking the logarithm of a number less than 1. error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x); /// @notice Thrown when calculating the square root overflows UD60x18. error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the UD60x18 type. function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal operation (==) in the UD60x18 type. function eq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the UD60x18 type. function gt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type. function gte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the UD60x18 type. function isZero(UD60x18 x) pure returns (bool result) { // This wouldn't work if x could be negative. result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the UD60x18 type. function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the UD60x18 type. function lt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type. function lte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the checked modulo operation (%) in the UD60x18 type. function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the UD60x18 type. function neq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the UD60x18 type. function not(UD60x18 x) pure returns (UD60x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the UD60x18 type. function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the UD60x18 type. function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the UD60x18 type. function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the UD60x18 type. function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type. function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the UD60x18 type. function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { wrap } from "./Casting.sol"; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_UD60x18, uMAX_WHOLE_UD60x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { UD60x18 } from "./ValueType.sol"; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the arithmetic average of x and y using the following formula: /// /// $$ /// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2) /// $$ /// /// In English, this is what this formula does: /// /// 1. AND x and y. /// 2. Calculate half of XOR x and y. /// 3. Add the two results together. /// /// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here: /// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223 /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The arithmetic average as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); unchecked { result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1)); } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_UD60x18`. /// /// @param x The UD60x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint > uMAX_WHOLE_UD60x18) { revert Errors.PRBMath_UD60x18_Ceil_Overflow(x); } assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `UNIT - remainder`. let delta := sub(uUNIT, remainder) // Equivalent to `x + remainder > 0 ? delta : 0`. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two UD60x18 numbers, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @param x The numerator as a UD60x18 number. /// @param y The denominator as a UD60x18 number. /// @param result The quotient as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap())); } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Requirements: /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xUint > uEXP_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. uint256 doubleUnitProduct = xUint * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693 /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in UD60x18. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xUint > uEXP2_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x); } // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = (xUint << 64) / uUNIT; // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation. result = wrap(Common.exp2(x_192x64)); } /// @notice Yields the greatest whole number less than or equal to x. /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The UD60x18 number to floor. /// @param result The greatest whole number less than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function floor(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `x - remainder > 0 ? remainder : 0)`. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x using the odd function definition. /// @dev See https://en.wikipedia.org/wiki/Fractional_part. /// @param x The UD60x18 number to get the fractional part of. /// @param result The fractional part of x as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function frac(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { result := mod(x, uUNIT) } } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down. /// /// @dev Requirements: /// - x * y must fit in UD60x18. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); if (xUint == 0 || yUint == 0) { return ZERO; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xyUint = xUint * yUint; if (xyUint / xUint != yUint) { revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. result = wrap(Common.sqrt(xyUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The UD60x18 number for which to calculate the inverse. /// @return result The inverse as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function inv(UD60x18 x) pure returns (UD60x18 result) { unchecked { result = wrap(uUNIT_SQUARED / x.unwrap()); } } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ln(UD60x18 x) pure returns (UD60x18 result) { unchecked { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~196_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the common logarithm. /// @return result The common logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log10(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) } default { result := uMAX_UD60x18 } } if (result.unwrap() == uMAX_UD60x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The UD60x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm. uint256 n = Common.msb(xUint / uUNIT); // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n // n is at most 255 and UNIT is 1e18. uint256 resultUint = n * uUNIT; // Calculate $y = x * 2^{-n}$. uint256 y = xUint >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultUint); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. uint256 DOUBLE_UNIT = 2e18; for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultUint += delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } result = wrap(resultUint); } } /// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @dev See the documentation in {Common.mulDiv18}. /// @param x The multiplicand as a UD60x18 number. /// @param y The multiplier as a UD60x18 number. /// @return result The product as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap())); } /// @notice Raises x to the power of y. /// /// For $1 \leq x \leq \infty$, the following standard formula is used: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used: /// /// $$ /// i = \frac{1}{x} /// w = 2^{log_2{i} * y} /// x^y = \frac{1}{w} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2} and {mul}. /// - Returns `UNIT` for 0^0. /// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xUint == 0) { return yUint == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xUint == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yUint == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yUint == uUNIT) { return x; } // If x is greater than `UNIT`, use the standard formula. if (xUint > uUNIT) { result = exp2(mul(log2(x), y)); } // Conversely, if x is less than `UNIT`, use the equivalent formula. else { UD60x18 i = wrap(uUNIT_SQUARED / xUint); UD60x18 w = exp2(mul(log2(i), y)); result = wrap(uUNIT_SQUARED / w.unwrap()); } } /// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - The result must fit in UD60x18. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a uint256. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) { // Calculate the first iteration of the loop in advance. uint256 xUint = x.unwrap(); uint256 resultUint = y & 1 > 0 ? xUint : uUNIT; // Equivalent to `for(y /= 2; y > 0; y /= 2)`. for (y >>= 1; y > 0; y >>= 1) { xUint = Common.mulDiv18(xUint, xUint); // Equivalent to `y % 2 == 1`. if (y & 1 > 0) { resultUint = Common.mulDiv18(resultUint, xUint); } } result = wrap(resultUint); } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must be less than `MAX_UD60x18 / UNIT`. /// /// @param x The UD60x18 number for which to calculate the square root. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); unchecked { if (xUint > uMAX_UD60x18 / uUNIT) { revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x); } // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers. // In this case, the two numbers are both the square root. result = wrap(Common.sqrt(xUint * uUNIT)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256. /// @dev The value type is defined here so it can be imported in all other files. type UD60x18 is uint256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoSD59x18, Casting.intoUint128, Casting.intoUint256, Casting.intoUint40, Casting.unwrap } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.ln, Math.log10, Math.log2, Math.mul, Math.pow, Math.powu, Math.sqrt } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.xor } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the UD60x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.or as |, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.sub as -, Helpers.xor as ^ } for UD60x18 global;
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.0; import "./PythStructs.sol"; import "./IPythEvents.sol"; /// @title Consume prices from the Pyth Network (https://pyth.network/). /// @dev Please refer to the guidance at https://docs.pyth.network/documentation/pythnet-price-feeds/best-practices for how to consume prices safely. /// @author Pyth Data Association interface IPyth is IPythEvents { /// @notice Returns the period (in seconds) that a price feed is considered valid since its publish time function getValidTimePeriod() external view returns (uint validTimePeriod); /// @notice Returns the price and confidence interval. /// @dev Reverts if the price has not been updated within the last `getValidTimePeriod()` seconds. /// @param id The Pyth Price Feed ID of which to fetch the price and confidence interval. /// @return price - please read the documentation of PythStructs.Price to understand how to use this safely. function getPrice( bytes32 id ) external view returns (PythStructs.Price memory price); /// @notice Returns the exponentially-weighted moving average price and confidence interval. /// @dev Reverts if the EMA price is not available. /// @param id The Pyth Price Feed ID of which to fetch the EMA price and confidence interval. /// @return price - please read the documentation of PythStructs.Price to understand how to use this safely. function getEmaPrice( bytes32 id ) external view returns (PythStructs.Price memory price); /// @notice Returns the price of a price feed without any sanity checks. /// @dev This function returns the most recent price update in this contract without any recency checks. /// This function is unsafe as the returned price update may be arbitrarily far in the past. /// /// Users of this function should check the `publishTime` in the price to ensure that the returned price is /// sufficiently recent for their application. If you are considering using this function, it may be /// safer / easier to use either `getPrice` or `getPriceNoOlderThan`. /// @return price - please read the documentation of PythStructs.Price to understand how to use this safely. function getPriceUnsafe( bytes32 id ) external view returns (PythStructs.Price memory price); /// @notice Returns the price that is no older than `age` seconds of the current time. /// @dev This function is a sanity-checked version of `getPriceUnsafe` which is useful in /// applications that require a sufficiently-recent price. Reverts if the price wasn't updated sufficiently /// recently. /// @return price - please read the documentation of PythStructs.Price to understand how to use this safely. function getPriceNoOlderThan( bytes32 id, uint age ) external view returns (PythStructs.Price memory price); /// @notice Returns the exponentially-weighted moving average price of a price feed without any sanity checks. /// @dev This function returns the same price as `getEmaPrice` in the case where the price is available. /// However, if the price is not recent this function returns the latest available price. /// /// The returned price can be from arbitrarily far in the past; this function makes no guarantees that /// the returned price is recent or useful for any particular application. /// /// Users of this function should check the `publishTime` in the price to ensure that the returned price is /// sufficiently recent for their application. If you are considering using this function, it may be /// safer / easier to use either `getEmaPrice` or `getEmaPriceNoOlderThan`. /// @return price - please read the documentation of PythStructs.Price to understand how to use this safely. function getEmaPriceUnsafe( bytes32 id ) external view returns (PythStructs.Price memory price); /// @notice Returns the exponentially-weighted moving average price that is no older than `age` seconds /// of the current time. /// @dev This function is a sanity-checked version of `getEmaPriceUnsafe` which is useful in /// applications that require a sufficiently-recent price. Reverts if the price wasn't updated sufficiently /// recently. /// @return price - please read the documentation of PythStructs.Price to understand how to use this safely. function getEmaPriceNoOlderThan( bytes32 id, uint age ) external view returns (PythStructs.Price memory price); /// @notice Update price feeds with given update messages. /// This method requires the caller to pay a fee in wei; the required fee can be computed by calling /// `getUpdateFee` with the length of the `updateData` array. /// Prices will be updated if they are more recent than the current stored prices. /// The call will succeed even if the update is not the most recent. /// @dev Reverts if the transferred fee is not sufficient or the updateData is invalid. /// @param updateData Array of price update data. function updatePriceFeeds(bytes[] calldata updateData) external payable; /// @notice Wrapper around updatePriceFeeds that rejects fast if a price update is not necessary. A price update is /// necessary if the current on-chain publishTime is older than the given publishTime. It relies solely on the /// given `publishTimes` for the price feeds and does not read the actual price update publish time within `updateData`. /// /// This method requires the caller to pay a fee in wei; the required fee can be computed by calling /// `getUpdateFee` with the length of the `updateData` array. /// /// `priceIds` and `publishTimes` are two arrays with the same size that correspond to senders known publishTime /// of each priceId when calling this method. If all of price feeds within `priceIds` have updated and have /// a newer or equal publish time than the given publish time, it will reject the transaction to save gas. /// Otherwise, it calls updatePriceFeeds method to update the prices. /// /// @dev Reverts if update is not needed or the transferred fee is not sufficient or the updateData is invalid. /// @param updateData Array of price update data. /// @param priceIds Array of price ids. /// @param publishTimes Array of publishTimes. `publishTimes[i]` corresponds to known `publishTime` of `priceIds[i]` function updatePriceFeedsIfNecessary( bytes[] calldata updateData, bytes32[] calldata priceIds, uint64[] calldata publishTimes ) external payable; /// @notice Returns the required fee to update an array of price updates. /// @param updateData Array of price update data. /// @return feeAmount The required fee in Wei. function getUpdateFee( bytes[] calldata updateData ) external view returns (uint feeAmount); /// @notice Parse `updateData` and return price feeds of the given `priceIds` if they are all published /// within `minPublishTime` and `maxPublishTime`. /// /// You can use this method if you want to use a Pyth price at a fixed time and not the most recent price; /// otherwise, please consider using `updatePriceFeeds`. This method may store the price updates on-chain, if they /// are more recent than the current stored prices. /// /// This method requires the caller to pay a fee in wei; the required fee can be computed by calling /// `getUpdateFee` with the length of the `updateData` array. /// /// /// @dev Reverts if the transferred fee is not sufficient or the updateData is invalid or there is /// no update for any of the given `priceIds` within the given time range. /// @param updateData Array of price update data. /// @param priceIds Array of price ids. /// @param minPublishTime minimum acceptable publishTime for the given `priceIds`. /// @param maxPublishTime maximum acceptable publishTime for the given `priceIds`. /// @return priceFeeds Array of the price feeds corresponding to the given `priceIds` (with the same order). function parsePriceFeedUpdates( bytes[] calldata updateData, bytes32[] calldata priceIds, uint64 minPublishTime, uint64 maxPublishTime ) external payable returns (PythStructs.PriceFeed[] memory priceFeeds); /// @notice Similar to `parsePriceFeedUpdates` but ensures the updates returned are /// the first updates published in minPublishTime. That is, if there are multiple updates for a given timestamp, /// this method will return the first update. This method may store the price updates on-chain, if they /// are more recent than the current stored prices. /// /// /// @dev Reverts if the transferred fee is not sufficient or the updateData is invalid or there is /// no update for any of the given `priceIds` within the given time range and uniqueness condition. /// @param updateData Array of price update data. /// @param priceIds Array of price ids. /// @param minPublishTime minimum acceptable publishTime for the given `priceIds`. /// @param maxPublishTime maximum acceptable publishTime for the given `priceIds`. /// @return priceFeeds Array of the price feeds corresponding to the given `priceIds` (with the same order). function parsePriceFeedUpdatesUnique( bytes[] calldata updateData, bytes32[] calldata priceIds, uint64 minPublishTime, uint64 maxPublishTime ) external payable returns (PythStructs.PriceFeed[] memory priceFeeds); }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.0; /// @title IPythEvents contains the events that Pyth contract emits. /// @dev This interface can be used for listening to the updates for off-chain and testing purposes. interface IPythEvents { /// @dev Emitted when the price feed with `id` has received a fresh update. /// @param id The Pyth Price Feed ID. /// @param publishTime Publish time of the given price update. /// @param price Price of the given price update. /// @param conf Confidence interval of the given price update. event PriceFeedUpdate( bytes32 indexed id, uint64 publishTime, int64 price, uint64 conf ); /// @dev Emitted when a batch price update is processed successfully. /// @param chainId ID of the source chain that the batch price update comes from. /// @param sequenceNumber Sequence number of the batch price update. event BatchPriceFeedUpdate(uint16 chainId, uint64 sequenceNumber); }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.0; contract PythStructs { // A price with a degree of uncertainty, represented as a price +- a confidence interval. // // The confidence interval roughly corresponds to the standard error of a normal distribution. // Both the price and confidence are stored in a fixed-point numeric representation, // `x * (10^expo)`, where `expo` is the exponent. // // Please refer to the documentation at https://docs.pyth.network/documentation/pythnet-price-feeds/best-practices for how // to how this price safely. struct Price { // Price int64 price; // Confidence interval around the price uint64 conf; // Price exponent int32 expo; // Unix timestamp describing when the price was published uint publishTime; } // PriceFeed represents a current aggregate price from pyth publisher feeds. struct PriceFeed { // The price ID. bytes32 id; // Latest available price Price price; // Latest available exponentially-weighted moving average price Price emaPrice; } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; enum YieldMode { AUTOMATIC, VOID, CLAIMABLE } enum GasMode { VOID, CLAIMABLE } interface IBlastPoints { function configurePointsOperator(address operator) external; } interface IBlast { // configure function configureContract(address contractAddress, YieldMode _yield, GasMode gasMode, address governor) external; function configure(YieldMode _yield, GasMode gasMode, address governor) external; // base configuration options function configureClaimableYield() external; function configureClaimableYieldOnBehalf(address contractAddress) external; function configureAutomaticYield() external; function configureAutomaticYieldOnBehalf(address contractAddress) external; function configureVoidYield() external; function configureVoidYieldOnBehalf(address contractAddress) external; function configureClaimableGas() external; function configureClaimableGasOnBehalf(address contractAddress) external; function configureVoidGas() external; function configureVoidGasOnBehalf(address contractAddress) external; function configureGovernor(address _governor) external; function configureGovernorOnBehalf(address _newGovernor, address contractAddress) external; // claim yield function claimYield(address contractAddress, address recipientOfYield, uint256 amount) external returns (uint256); function claimAllYield(address contractAddress, address recipientOfYield) external returns (uint256); // claim gas function claimAllGas(address contractAddress, address recipientOfGas) external returns (uint256); function claimGasAtMinClaimRate( address contractAddress, address recipientOfGas, uint256 minClaimRateBips ) external returns (uint256); function claimMaxGas(address contractAddress, address recipientOfGas) external returns (uint256); function claimGas( address contractAddress, address recipientOfGas, uint256 gasToClaim, uint256 gasSecondsToConsume ) external returns (uint256); // read functions function readClaimableYield(address contractAddress) external view returns (uint256); function readYieldConfiguration(address contractAddress) external view returns (uint8); function readGasParams(address contractAddress) external view returns (uint256 etherSeconds, uint256 etherBalance, uint256 lastUpdated, GasMode); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import "./IBlast.sol"; interface IERC20Rebasing { // changes the yield mode of the caller and update the balance // to reflect the configuration function configure(YieldMode) external returns (uint256); // "claimable" yield mode accounts can call this this claim their yield // to another address function claim(address recipient, uint256 amount) external returns (uint256); // read the claimable amount for an account function getClaimableAmount(address account) external view returns (uint256); function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); function transfer(address recipient, uint256 amount) external returns (bool); function approve(address spender, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import "solady/src/tokens/ERC20.sol"; import "../libraries/accounts/AccountLib.sol"; import "../interfaces/IAccountManager.sol"; interface IAccount { /// @notice How much was borrowed from the lending pool event Borrow(uint256 amount); /// @notice How much debt was paid back to the lending pool event Repay(uint256 amount); function asset() external view returns (IERC20); function owner() external view returns (address); /// @dev Returns a unique identifier distinguishing this type of account function getKind() external view returns (bytes32); function getManager() external view returns (IAccountManager); function initialize(address owner_) external; function pause() external; function unpause() external; /// Owner interactions function borrow(uint256 amount) external; function repay(uint256 amount) external; function claim(uint256 amount) external; function claim(uint256 amount, address recipient) external; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { UD60x18, ud } from "@prb/math/src/UD60x18.sol"; import "../libraries/accounts/AccountLib.sol"; import "./ILiquidationReceiver.sol"; interface IAccountManager { function lendingPool() external view returns (address); function isCreatedAccount(address) external view returns (bool); function accountCount() external view returns (uint256); function isApprovedStrategy(address strategy) external view returns (bool); function isLiquidationReceiver(address receiver) external view returns (bool); function pauseAccount(address account) external; function unpauseAccount(address account) external; function getFeeCollector() external view returns (address); function getLiquidationReceiver( address account, address liquidationFeeTo ) external view returns (ILiquidationReceiver); function getLiquidationFee() external returns (AccountLib.LiquidationFee memory); // Following three functions are only callable by the target Account itself. function borrow(uint256 amount) external returns (uint256 borrowedAmount); function repay(address account, uint256 amount) external returns (uint256 repaidAmount); function claim(uint256 amount, address recipient) external; function liquidate(address account, address liquidationFeeTo) external returns (ILiquidationReceiver); /// @notice Deposits assets into a strategy on behalf of msg.sender, which must be an Account. function strategyDeposit( address owner, address strategy, uint256 assets, bytes memory data ) external payable returns (uint256 shares); function strategyWithdrawal(address owner, address strategy, uint256 assets) external; /// @dev Some strategies have an execution fee that needs to be paid for withdrawal so that must be sent to this /// function. function liquidateStrategy( address account, address liquidationFeeTo, address strategy, bytes memory data ) external payable returns (ILiquidationReceiver); function emitLiquidationFeeEvent( address feeCollector, address liquidationFeeTo, uint256 protocolShare, uint256 liquidatorShare ) external; function getLendAsset() external view returns (IERC20); function getDebtAmount(address account) external view returns (uint256); function getTotalCollateralValue(address account) external view returns (uint256 totalValue); function getAccountLoan(address account) external view returns (AccountLib.Loan memory loan); function getAccountHealth(address account) external view returns (AccountLib.Health memory health); /// @notice Returns whether or not an account is liquidatable. If true, return the timestamp its liquidation started /// at. function getAccountLiquidationStatus(address account) external view returns (AccountLib.LiquidationStatus memory); function getAccountLiquidationSlippageTolerance(address account) external view returns (UD60x18); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; /// @notice Interface for a price oracle preconfigured to return the price of an asset. /// @dev Price can be in any denomination, depending on the preconfiguration. interface IAssetPriceOracle { function getPrice() external view returns (uint256 price); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import { IAssetPriceOracle } from "./IAssetPriceOracle.sol"; /** * @title IAssetPriceProvider interface * @notice Interface for the collateral price provider. * */ interface IAssetPriceProvider { /** * @dev returns the asset price in debt token * @param asset the address of the asset * @return the debt token price of the asset * */ function getAssetPrice(address asset) external view returns (uint256); /** * @dev returns the asset oracle address * @param asset the address of the asset * @return the address of the asset oracle */ function getAssetOracle(address asset) external view returns (IAssetPriceOracle); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; /// @notice Provides aggregated information about collateral supported by the system. interface ICollateralAggregator { function getTotalCollateralValue(address account) external view returns (uint256 totalValue); function getCollateralAmount(address account, address asset) external view returns (uint256 amount); function getSupportedCollateralAssets() external view returns (address[] memory assets); function isCollateralAsset(address asset) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import { SafeERC20, IERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; interface IFlashLoanLender { /** * @dev When `flashLoanSimple` is called on the Lender, it invokes the `receiveFlashLoanSimple` hook on the * recipient. * * At the time of the call, the Lending Pool will have transferred `amount` for `token` to the recipient. Before * this call returns, the recipient must have transferred `amount` plus `feeAmount` for the token back to the * Lender, or else the entire flash loan will revert. * * `userData` is the same value passed in the `ILendingPool.flashLoanSimple` call. * * The flash loan lender forwards the initiator of the loan. * It also expects back some call data from the receiver and returns it to the initiator. */ function flashLoanSimple( address receiverAddress, address asset, uint256 amount, bytes memory userData ) external returns (bytes memory); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import { SafeERC20, IERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; interface IFlashLoanRecipient { /** * @dev When `flashLoanSimple` is called on the Lending Pool, it invokes the `receiveFlashLoanSimple` hook on the * recipient. * * At the time of the call, the Lending Pool will have transferred `amount` for `token` to the recipient. Before * this * call returns, the recipient must have transferred `amount` plus `feeAmount` for the token back to the * Lending Pool, or else the entire flash loan will revert. * * `userData` is the same value passed in the `ILendingPool.flashLoanSimple` call. * * The flash loan lender forwards the initiator of the loan. * It also expects back the call data that it forwards to the initiator. * @return success True if the execution of the operation succeeds, false otherwise * @return data Any callback data that the initiator needs */ function receiveFlashLoanSimple( address initiator, IERC20 token, uint256 amount, uint256 feeAmount, bytes memory userData ) external returns (bool success, bytes memory data); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; interface IGasTank { function allowList(address user) external returns (bool allowed); function accessControllers(address controller) external returns (bool allowed); function deposit() external payable; function withdraw(uint256 amount) external; function allowListUpdate(address contractAddress, bool allowed) external; function accessControllerUpdate(address accessController, bool allowed) external; function reimburseGas(address receiver, uint256 amount) external; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import { UD60x18 } from "@prb/math/src/UD60x18.sol"; interface IInterestRateStrategy { function calculateInterestRate(UD60x18 utilization) external view returns (UD60x18 liquidityRate, UD60x18 borrowRate); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { UD60x18, ud } from "@prb/math/src/UD60x18.sol"; interface ILendingPool { function allowedLenders(address lender) external view returns (bool); function deposit(uint256 amount) external returns (uint256); function withdraw(uint256 amount) external returns (uint256); function getMinimumOpenBorrow() external view returns (uint256); function setMinimumOpenBorrow(uint256 amount) external; function getDebtAmount(address borrower) external view returns (uint256); function getDepositAmount(address lender) external view returns (uint256); function getTotalSupply() external view returns (uint256); function getTotalBorrow() external view returns (uint256); function getAsset() external view returns (IERC20); function getNormalizedIncome() external view returns (UD60x18); function getNormalizedDebt() external view returns (UD60x18); function accrueInterest() external; // PermissionedLendingPool Only function updateLenderStatus(address lender, bool status) external; // AccountManager function borrow(uint256 amount, address onBehalfOf) external returns (uint256); ///@dev Repays loan of `onBehalfOf`, transferring funds from `onBehalfOf` function repay(uint256 amount, address onBehalfOf) external returns (uint256); ///@dev Repays loan of `onBehalfOf`, transferring funds from `from` function repay(uint256 amount, address onBehalfOf, address from) external returns (uint256); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import { SafeERC20, IERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { IAccount } from "./IAccount.sol"; import { IAccountManager } from "./IAccountManager.sol"; interface ILiquidationReceiver { struct Props { IERC20 asset; IAccountManager manager; IAccount account; address liquidationFeeTo; } function initialize(Props memory props_) external; function repay() external; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import { UD60x18 } from "@prb/math/src/UD60x18.sol"; interface IProtocolGovernor { function getOwner() external view returns (address); function getAddress(bytes32 id) external view returns (address); function getImmutableAddress(bytes32 id) external view returns (address); function getFee(bytes32 id) external view returns (UD60x18); function isProtocolDeprecated() external view returns (bool); // Accounts Managers can open loans on behalf of Accounts they create. function updateAccountManagerStatus(address manager, bool active) external; function isAccountManager(address manager) external view returns (bool); // RBAC function grantRole(bytes32 role, address account) external; function revokeRole(bytes32 role, address account) external; function hasRole(bytes32 role, address account) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import { UD60x18 } from "@prb/math/src/UD60x18.sol"; // TODO: in the future, we will adjust this based off how long the account has been in liquidation // Note: This slippage tolerance might be better to increase as a function of elapse // time. That is, the slippage is higher the longer the account is in liquidation. // A static slippage like this means we'd need to manually increase the value if the // position can't be liquidate with the set slippage tolerance. /// @notice This contract returns the slippageTolerance for a strategy liquidation as a function of how long that /// strategy has been in /// liquidation mode. interface IStrategySlippageModel { function calculateSlippage(uint256 timeSinceLiquidationStarted) external view returns (UD60x18 slippageTolerance); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import "../system/ProtocolGovernor.sol"; import "../external/blast/IBlast.sol"; /** * @title JuiceGovernor * @dev Allows for storing and management of protocol data related to our Blast deployment. */ contract JuiceGovernor is ProtocolGovernor { constructor( InitParams memory params, address blast, address blastPoints ) ProtocolGovernor(params) nonZeroAddressAndContract(blast) nonZeroAddressAndContract(blastPoints) { _setImmutableAddress(GovernorLib.BLAST, blast); _setImmutableAddress(GovernorLib.BLAST_POINTS, blastPoints); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import "./JuiceGovernor.sol"; import "../system/ProtocolModule.sol"; import "../libraries/Roles.sol"; /** * @title JuiceModule */ abstract contract JuiceModule is AddressCheckerTrait { using Roles for IProtocolGovernor; IProtocolGovernor private _protocolGovernor; /** * @dev Constructor that initializes the Juice Governor for this contract. * * @param juiceGovernor_ The contract instance to use as the Juice Governor. */ constructor(address juiceGovernor_) nonZeroAddressAndContract(juiceGovernor_) { _protocolGovernor = IProtocolGovernor(juiceGovernor_); } modifier onlyLendYieldSender() { _protocolGovernor._validateRole(msg.sender, Roles.LEND_YIELD_SENDER, "LEND_YIELD_SENDER"); _; } function _getBlast() internal view returns (IBlast) { return IBlast(_protocolGovernor.getImmutableAddress(GovernorLib.BLAST)); } function _getBlastPoints() internal view returns (IBlastPoints) { return IBlastPoints(_protocolGovernor.getImmutableAddress(GovernorLib.BLAST_POINTS)); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import "../JuiceModule.sol"; /// @title BlastGas /// @notice Exposes a method to claim gas refunds from the contract and send them to the protocol. contract BlastGas { IProtocolGovernor private _protocolGovernor; event GasRefundClaimed(address indexed recipient, uint256 gasClaimed); constructor(address protocolGovernor_) { _protocolGovernor = IProtocolGovernor(protocolGovernor_); IBlast blast = IBlast(_protocolGovernor.getImmutableAddress(GovernorLib.BLAST)); blast.configureClaimableGas(); } /// @notice Claims the maximum possible gas from the contract with some recipient. /// @dev This is permissionless because funds will go to the protocol gasFeeWallet and the maximum possible gas will /// be claimed each time. /// @dev IBlast.claimMaxGas guarnatees a 100% claim rate, but not all pending gas fees will be claimed. /// @dev To check the current gas fee information of a contract, call IBlast.readGasParams(contractAddress). function claimMaxGas() external returns (uint256 gasClaimed) { IBlast blast = IBlast(_protocolGovernor.getImmutableAddress(GovernorLib.BLAST)); address _feeCollector = _protocolGovernor.getAddress(GovernorLib.FEE_COLLECTOR); gasClaimed = blast.claimMaxGas(address(this), _feeCollector); emit GasRefundClaimed(_feeCollector, gasClaimed); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import "../JuiceModule.sol"; /// @title BlastPoints /// @notice Configures a hot wallet that operates the points API for this contract. contract BlastPoints { IProtocolGovernor private _protocolGovernor; event PointsOperatorConfigured(address indexed operator); constructor(address protocolGovernor_, address pointsOperator_) { _protocolGovernor = IProtocolGovernor(protocolGovernor_); IBlastPoints blast = IBlastPoints(_protocolGovernor.getImmutableAddress(GovernorLib.BLAST_POINTS)); blast.configurePointsOperator(pointsOperator_); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import { ProtocolModule, ProtocolGovernor } from "../system/ProtocolModule.sol"; import { Pausable } from "@openzeppelin/contracts/utils/Pausable.sol"; import { IERC20Metadata } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import { SafeERC20, IERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import { MathUtils } from "../libraries/math/MathUtils.sol"; import { UD60x18, ud, UNIT, ZERO } from "@prb/math/src/UD60x18.sol"; import { IInterestRateStrategy } from "../interfaces/IInterestRateStrategy.sol"; import { ICollateralAggregator } from "../interfaces/ICollateralAggregator.sol"; import { IAccount } from "../interfaces/IAccount.sol"; import { OmegaDebtToken } from "./OmegaDebtToken.sol"; import { OmegaLiquidityToken } from "./OmegaLiquidityToken.sol"; import "../libraries/LendingLib.sol"; import "../libraries/Errors.sol"; import "../interfaces/IFlashLoanLender.sol"; import "../interfaces/ILendingPool.sol"; import "../interfaces/IFlashLoanRecipient.sol"; // Note: Areas for improvement // 1. Compound interest, need to understand how debt amount and utilization contribute to linear interest // 2. Unit, what should be way/ray/percentage // a. Make a table for this or document it better inline // 3. LTV vs liquidation threshold, maybe use threshold be consistent with aave /// @notice Lending Pool Events /// @dev Place all events used by the LendingPool contract here abstract contract LendingPoolEvents { /// @notice A `lender` has deposited `amount` of assets into the pool event Deposit(address indexed lender, uint256 amount); /// @notice A `lender` has withdrawn `amount` of assets from the pool event Withdraw(address indexed lender, uint256 amount); /// @notice A `borrower` has borrowed `amount` of assets from the pool event Borrow(address indexed borrower, uint256 amount); /// @notice A `borrower` has repaid `amount` of assets to the pool event Repay(address indexed borrower, uint256 amount); /// @notice The borrow rate has been updated to `rate`, indicating a change in the interest rate for borrowers event BorrowRateUpdated(UD60x18 rate); /// @notice The borrow index has been updated to `index`, indicating the interest accrued on borrowers debt event BorrowIndexUpdated(UD60x18 index); /// @notice The liquidity rate has been updated to `rate`, indicating a change in the interest rate for lenders event LiquidityRateUpdated(UD60x18 rate); /// @notice The liquidity index has been updated to `index`, indicating the interest accrued on lenders deposits event LiquidityIndexUpdated(UD60x18 index); /// @notice The interest rate strategy has been updated to `newStrategy` event InterestRateStrategyUpdated(address newStrategy); /// @notice The deposit cap has been updated to `newDepositCap` event DepositCapUpdated(uint256 newDepositCap); /// @notice Event when a flash loan has occurred event FlashLoan(IERC20 indexed initiator, uint256 amount, uint256 fee); /// @notice Minimum borrow has been updated to `newMinimumBorrow` event MinimumBorrowUpdated(uint256 newMinimumBorrow); } /// @title Lending Pool /// @notice The LendingPool contract manages the depositing and borrowing of assets contract LendingPool is Pausable, ILendingPool, IFlashLoanLender, ProtocolModule, LendingPoolEvents, ReentrancyGuard { using SafeERC20 for IERC20; /// @notice The debt token OmegaDebtToken public immutable debtToken; /// @notice The liquidity token OmegaLiquidityToken public immutable liquidityToken; /// @notice Contract that calculates the interest rate IInterestRateStrategy public strategy; /// @notice The reserve state LendingLib.Reserve public reserve; /// @notice The cap to apply to deposits uint256 public depositCap; /// @notice Minimum amount of fees that can be collected uint256 private _minimumFeeCollectionAmount; /// @notice Minimum open borrow a user can have. uint256 internal _minimumOpenBorrow; struct BaseInitParams { address interestRateStrategy; uint256 minimumOpenBorrow; } constructor( address protocolGovernor_, BaseInitParams memory params ) nonZeroAddress(_getLendAsset()) nonZeroAddress(params.interestRateStrategy) ProtocolModule(protocolGovernor_) nonZeroAddress(_getFeeCollector()) { reserve = LendingLib.Reserve({ asset: IERC20(_getLendAsset()), assetBalance: 0, borrowRate: ZERO, liquidityRate: ZERO, liquidityIndex: UNIT, borrowIndex: UNIT, lastUpdateTimestamp: block.timestamp }); /// TODO: create params struct and tune these params uint8 decimals = IERC20Metadata(address(reserve.asset)).decimals(); _minimumFeeCollectionAmount = 10 ** decimals; debtToken = new OmegaDebtToken(address(this), decimals); liquidityToken = new OmegaLiquidityToken(address(this), decimals); strategy = IInterestRateStrategy(params.interestRateStrategy); _minimumOpenBorrow = params.minimumOpenBorrow; // The initial deposit cap is set ot the max depositCap = type(uint256).max; } //////////////////// // Administrative functions //////////////////// /// @notice Change the contract defining how interest rates respond to utilization /// @param newStrategy Address of interest rate strategy to update to function setInterestRateStrategy(address newStrategy) external nonZeroAddress(newStrategy) onlyOwner { strategy = IInterestRateStrategy(newStrategy); (UD60x18 liquidityRate, UD60x18 borrowRate) = strategy.calculateInterestRate(ud(0.5e18)); // strategy address can't be zero and at 50% utilization, borrow rate must be greater than liquidity rate if (borrowRate <= liquidityRate) revert Errors.InvalidParams(); // Accrue interest _accrueInterest(); // Update interest rate _updateInterestRate(); emit InterestRateStrategyUpdated(newStrategy); } function getMinimumOpenBorrow() external view returns (uint256) { return _minimumOpenBorrow; } function setMinimumOpenBorrow(uint256 minimumOpenBorrow) external onlyOwner { _minimumOpenBorrow = minimumOpenBorrow; } function updateLenderStatus(address lender, bool status) external virtual override { } function setDepositCap(uint256 newDepositCap) external onlyOwner { depositCap = newDepositCap; emit DepositCapUpdated(newDepositCap); } /// @notice Let the owner pause deposits and borrows function pause() external onlyOwner { _pause(); } /// @notice Let the owner unpause deposits and borrows function unpause() external onlyOwner { _unpause(); } //////////////////// // Lending Methods //////////////////// /// @notice Public function for accruing interest rate so that users don't have to perform actions to update /// indices. function accrueInterest() public { _accrueInterest(); _updateInterestRate(); } /// @notice Deposit underlying assets into the pool /// @param amount The amount of underlying assets to deposit function deposit(uint256 amount) public virtual whenProtocolNotDeprecated whenNotPaused nonReentrant returns (uint256) { if (depositCap != type(uint256).max && amount + getTotalSupply() > depositCap) { revert Errors.DepositCapExceeded(); } _beforeAction(); reserve.assetBalance += amount; IERC20(reserve.asset).safeTransferFrom(msg.sender, address(this), amount); liquidityToken.mint(msg.sender, amount, reserve.liquidityIndex, MathUtils.ROUNDING.DOWN); _mintToTreasury(); _updateInterestRate(); emit Deposit(msg.sender, amount); return amount; } /// @notice Withdraw underlying assets from the pool. If argument is uint256 max, then withdraw everything. /// @param amount The amount of underlying assets to withdraw function withdraw(uint256 amount) public virtual whenNotPaused nonReentrant returns (uint256) { uint256 amountToWithdraw = amount; _beforeAction(); bool isMaxWithdraw = false; uint256 userBalance = liquidityToken.balanceOf(msg.sender); if (amount >= userBalance) { amountToWithdraw = userBalance; isMaxWithdraw = true; } reserve.assetBalance -= amountToWithdraw; liquidityToken.burn(msg.sender, amountToWithdraw, reserve.liquidityIndex, isMaxWithdraw, MathUtils.ROUNDING.UP); IERC20(reserve.asset).safeTransfer(msg.sender, amountToWithdraw); _mintToTreasury(); _updateInterestRate(); emit Withdraw(msg.sender, amountToWithdraw); return amountToWithdraw; } function flashLoanSimple( address receiverAddress, address asset, uint256 amount, bytes memory userData ) external virtual nonZeroAddress(receiverAddress) whenNotPaused nonReentrant returns (bytes memory) { if (asset != address(reserve.asset)) { revert Errors.InvalidFlashLoanAsset(); } uint256 balanceBefore = reserve.asset.balanceOf(address(this)); uint256 expectedFee = ud(amount).mul(_flashLoanFee()).unwrap(); if (amount > balanceBefore) { revert Errors.InvalidFlashLoanBalance(); } reserve.asset.safeTransfer(receiverAddress, amount); (bool success, bytes memory result) = IFlashLoanRecipient(receiverAddress).receiveFlashLoanSimple( msg.sender, reserve.asset, amount, expectedFee, userData ); if (!success) { revert Errors.InvalidFlashLoanRecipientReturn(); } uint256 balanceAfter = reserve.asset.balanceOf(address(this)); if (balanceBefore > balanceAfter) { revert Errors.InvalidPostFlashLoanBalance(); } uint256 fee = balanceAfter - balanceBefore; if (expectedFee > fee) { revert Errors.InsufficientFlashLoanFeeAmount(); } if (fee > 0) { reserve.asset.safeTransfer(_getFeeCollector(), fee); } emit FlashLoan(reserve.asset, amount, fee); return result; } ////////////////////////// // Account Managers only ////////////////////////// function borrow( uint256 amount, address onBehalfOf ) external whenProtocolNotDeprecated whenNotPaused onlyAccountManager nonReentrant returns (uint256) { if (amount > reserve.asset.balanceOf(address(this))) { revert Errors.InsufficientLiquidity(); } _beforeAction(); reserve.assetBalance -= amount; debtToken.mint(onBehalfOf, amount, reserve.borrowIndex, MathUtils.ROUNDING.UP); reserve.asset.safeTransfer(onBehalfOf, amount); _mintToTreasury(); _updateInterestRate(); if (amount < _minimumOpenBorrow) { revert Errors.InvalidMinimumOpenBorrow(); } emit Borrow(onBehalfOf, amount); return amount; } function repay( uint256 amount, address onBehalfOf ) external whenNotPaused onlyAccountManager nonReentrant returns (uint256) { return _repay(amount, onBehalfOf, onBehalfOf); } function repay( uint256 amount, address onBehalfOf, address from ) public virtual whenNotPaused onlyAccountManager nonReentrant returns (uint256) { return _repay(amount, onBehalfOf, from); } //////////////////////// // Tokenization Methods //////////////////////// /// @notice Get the borrower's debt balance /// @param borrower The address of the borrower /// @return debt The amount of debt the borrower has function getDebtAmount(address borrower) external view returns (uint256 debt) { debt = debtToken.balanceOf(borrower); } /// @notice Get the lender's deposit balance /// @param lender The address of the lender /// @return balance The amount of the lender's deposit function getDepositAmount(address lender) external view returns (uint256 balance) { balance = liquidityToken.balanceOf(lender); } /// @notice Get the total amount of liquidity function getTotalSupply() public view returns (uint256) { return ud(liquidityToken.scaledTotalSupply()).mul(reserve.liquidityIndex).unwrap(); } /// @notice Get the total amount of outstanding debt function getTotalBorrow() public view returns (uint256) { return ud(debtToken.scaledTotalSupply()).mul(reserve.borrowIndex).unwrap(); } ////////////////////////// // Views ////////////////////////// /// @notice Returns the asset used for deposits/borrows function getAsset() public view returns (IERC20) { return reserve.asset; } /// @notice Returns the current liquidity rate function getLiquidityRate() public view returns (UD60x18) { return reserve.liquidityRate; } /// @notice Returns the current borrow rate function getBorrowRate() public view returns (UD60x18) { return reserve.borrowRate; } /// @notice Returns the ongoing normalized income for the reserve /// A value of 1e18 means there is no income. As time passes, the income is accrued /// A value of 2*1e18 means for each unit of asset one unit of income has been accrued /// @return normalizedIncome The normalized income. function getNormalizedIncome() public view virtual returns (UD60x18) { uint256 timestamp = reserve.lastUpdateTimestamp; // slither-disable-next-line incorrect-equality if (timestamp == block.timestamp) { return reserve.liquidityIndex; } return MathUtils.calculateCompoundedInterest(reserve.liquidityRate, timestamp).mul(reserve.liquidityIndex); } /// @notice Returns the ongoing normalized variable debt for the reserve /// A value of 1e18 means there is no debt. As time passes, the income is accrued /// A value of 2*1e18 means that for each unit of debt, one unit worth of interest has been accumulated /// @return normalizedDebt The normalized variable debt. function getNormalizedDebt() public view returns (UD60x18) { uint256 timestamp = reserve.lastUpdateTimestamp; // slither-disable-next-line incorrect-equality if (timestamp == block.timestamp) { return reserve.borrowIndex; } return MathUtils.calculateCompoundedInterest(reserve.borrowRate, timestamp).mul(reserve.borrowIndex); } function allowedLenders(address lender) external view virtual override returns (bool) { } ///////////// // Internal ///////////// /// @notice Repay `amount` of assets to the pool for a `borrower` /// @param amount The amount of underlying assets to repay /// @param borrower The borrower to repay for /// @param from The address from which to transfer the funds function _repay(uint256 amount, address borrower, address from) internal returns (uint256) { _beforeAction(); uint256 paybackAmount = amount; // Repay rest of debt uint256 debtAmount = debtToken.balanceOf(borrower); bool isMaxRepay = false; if (paybackAmount >= debtAmount) { paybackAmount = debtAmount; isMaxRepay = true; } reserve.assetBalance += paybackAmount; debtToken.burn(borrower, paybackAmount, reserve.borrowIndex, isMaxRepay, MathUtils.ROUNDING.DOWN); reserve.asset.safeTransferFrom(from, address(this), paybackAmount); _mintToTreasury(); _updateInterestRate(); uint256 remainingDebt = debtToken.balanceOf(borrower); if (remainingDebt > 0 && remainingDebt < _minimumOpenBorrow) { revert Errors.InvalidMinimumOpenBorrow(); } emit Repay(borrower, paybackAmount); return paybackAmount; } /// @notice Update the liquidity and borrow indices based off the last interest rates. /// @dev This function should be called before any deposit, withdraw, borrow, or repay /// @dev This mirrors Aave Protocol's update index functions function _accrueInterest() internal { // Get the current interest rate if (reserve.liquidityRate > ZERO) { // Calculate cumulative liquidity interest since last update UD60x18 cumulatedLiquidityInterest = MathUtils.calculateCompoundedInterest(reserve.liquidityRate, reserve.lastUpdateTimestamp); // Accumulate interest into the liquidity index reserve.liquidityIndex = cumulatedLiquidityInterest.mul(reserve.liquidityIndex); // Calculate cumulative borrow interest since last update UD60x18 cumulatedBorrowInterest = MathUtils.calculateCompoundedInterest(reserve.borrowRate, reserve.lastUpdateTimestamp); reserve.borrowIndex = cumulatedBorrowInterest.mul(reserve.borrowIndex); emit LiquidityIndexUpdated(reserve.liquidityIndex); emit BorrowIndexUpdated(reserve.borrowIndex); } reserve.lastUpdateTimestamp = block.timestamp; } /** * @dev Update the current interest rate based on the strategy */ function _updateInterestRate() internal { // Calculate the current interest rate // Available liquidity is the amount current balance left in the reserve uint256 totalDebt = getTotalBorrow(); uint256 availableLiquidity = reserve.assetBalance; // Utilization is: debt / (available liquidity + debt) UD60x18 utilization = ZERO; if (totalDebt > 0) { utilization = ud(totalDebt).div(ud(availableLiquidity + totalDebt)); } UD60x18 baseLiquidityRate; (baseLiquidityRate, reserve.borrowRate) = strategy.calculateInterestRate(utilization); // The effective liquidity rate is the liquidity rate minus the lending fee // If lenders should earn 10% and lending fee is 10%, then they should earn 10% * (100% - 10%) or 9%. reserve.liquidityRate = baseLiquidityRate.mul(UNIT.sub(_lendingFee())); emit BorrowRateUpdated(reserve.borrowRate); emit LiquidityRateUpdated(reserve.liquidityRate); } function _mintToTreasury() internal { uint256 totalLiquidityTokens = liquidityToken.totalSupply(); uint256 totalDebtAndUnusedTokens = debtToken.totalSupply() + reserve.assetBalance; if (totalDebtAndUnusedTokens > totalLiquidityTokens) { uint256 liquidityTokensToMint = totalDebtAndUnusedTokens - totalLiquidityTokens; // Because the math rounds down, dust will be accumulated in pool. This ensures we aren't pulling that dust // every time. if (liquidityTokensToMint > _minimumFeeCollectionAmount) { liquidityToken.mint( _getFeeCollector(), liquidityTokensToMint, reserve.liquidityIndex, MathUtils.ROUNDING.DOWN ); } } } function _beforeAction() internal virtual { _accrueInterest(); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import "solady/src/tokens/ERC20.sol"; import { ILendingPool } from "../interfaces/ILendingPool.sol"; import { UD60x18 } from "@prb/math/src/UD60x18.sol"; import "solady/src/utils/FixedPointMathLib.sol"; import "../libraries/traits/AddressCheckerTrait.sol"; import "../libraries/Errors.sol"; import "../libraries/math/MathUtils.sol"; /// @title LendingToken /// @notice ERC20 token representing the Lending pool positions /// - Extends ERC20 by adding scaledBalanceOf() and scaledTotalSupply() /// - Overrides balanceOf() and totalSupply() to return scaled values /// - Disables transfers other than mint and burn /// /// @dev The underlying tokens minted and burned are scaled by the normalized income index. /// In this way, as the income index increases, the amount of the tokens increases and user /// balances increase. This approach closely follows the approach used by the Aave Protocol. abstract contract LendingToken is ERC20, AddressCheckerTrait { using FixedPointMathLib for uint256; ILendingPool internal immutable _pool; uint8 private immutable _decimals; string private _name; string private _symbol; // TODO: In the future the name and symbol should reflect the underlying asset name and symbol constructor(address pool_, uint8 decimals_, string memory name_, string memory symbol_) nonZeroAddress(pool_) { _pool = ILendingPool(pool_); _decimals = decimals_; _name = name_; _symbol = symbol_; } modifier onlyLendingPool() { if (msg.sender != address(_pool)) revert Errors.OnlyLendingPool(); _; } function name() public view override returns (string memory) { return _name; } function symbol() public view override returns (string memory) { return _symbol; } function decimals() public view override returns (uint8) { return _decimals; } /// @notice The total supply unscaled function scaledTotalSupply() public view returns (uint256) { return super.totalSupply(); } /// @notice The balance of an account unscaled function scaledBalanceOf(address account) public view returns (uint256) { return super.balanceOf(account); } /// @notice Mint the token to an account, the amount of tokens to mint is scaled down /// based on the normalized debt index. /// @param account The account to mint the tokens to /// @param amount The scaled amount of tokens to mint /// @param index The normalized debt index function mint(address account, uint256 amount, UD60x18 index, MathUtils.ROUNDING mode) external onlyLendingPool { uint256 amountScaled = _scaleAmount(amount, index, mode); _mint(account, amountScaled); } /// @notice Burn the token from an account, the amount of tokens to burn is scaled down /// based on the normalized debt index. /// @param account The account to burn the tokens from /// @param amount The scaled amount of tokens to burn) /// @param index The normalized debt index /// @param max Whether or not to burn the maximum amount function burn( address account, uint256 amount, UD60x18 index, bool max, MathUtils.ROUNDING mode ) external onlyLendingPool { uint256 burnAmount; if (max) { burnAmount = scaledBalanceOf(account); } else { burnAmount = _scaleAmount(amount, index, mode); } _burn(account, burnAmount); } function _scaleAmount(uint256 amount, UD60x18 index, MathUtils.ROUNDING mode) internal pure returns (uint256) { uint256 _index = index.unwrap(); return mode == MathUtils.ROUNDING.UP ? amount.divWadUp(_index) : amount.divWad(_index); } /// @notice Disables transfers other than mint and burn /// @dev Done explicitly because solady transfers do not prevent transferring to zero address. function transfer(address, uint256) public pure override returns (bool) { revert Errors.TransferDisabled(); } function transferFrom(address, address, uint256) public pure override returns (bool) { revert Errors.TransferDisabled(); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import "./LendingToken.sol"; /// @title OmegaDebtToken /// @notice ERC20 token representing the Lending pool deposits and debt /// - Extends ERC20 by adding scaledBalanceOf() and scaledTotalSupply() /// - Overrides balanceOf() and totalSupply() to return scaled values /// - Disables transfers other than mint and burn /// /// @dev The underlying tokens minted and burned are scaled by the normalized debt index. /// In this way, as the debt index increases, the amount of the tokens increases and user /// balances increase. This approach closely follows the approach used by the Aave Protocol. contract OmegaDebtToken is LendingToken { constructor( address pool_, uint8 decimals_ ) nonZeroAddress(pool_) LendingToken(pool_, decimals_, "Omega Debt Token", "ODT") { } /// @notice The total supply of the token scaled by the normalized debt index function totalSupply() public view override returns (uint256) { return ud(scaledTotalSupply()).mul(_pool.getNormalizedDebt()).unwrap(); } /// @notice The balance of an account scaled by the normalized debt index function balanceOf(address account) public view override returns (uint256) { uint256 accountBalance = super.balanceOf(account); if (accountBalance == 0) { return 0; } return ud(accountBalance).mul(_pool.getNormalizedDebt()).unwrap(); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import "./LendingToken.sol"; /// @title OmegaLiquidityToken /// @notice ERC20 token representing the Lending pool deposits /// - Extends ERC20 by adding scaledBalanceOf() and scaledTotalSupply() /// - Overrides balanceOf() and totalSupply() to return scaled values /// - Disables transfers other than mint and burn /// /// @dev The underlying tokens minted and burned are scaled by the normalized income index. /// In this way, as the income index increases, the amount of the tokens increases and user /// balances increase. This approach closely follows the approach used by the Aave Protocol. contract OmegaLiquidityToken is LendingToken { constructor( address pool_, uint8 decimals_ ) nonZeroAddress(pool_) LendingToken(pool_, decimals_, "Omega Liquidity Token", "OLT") { } /// @notice The total supply of the token scaled by the normalized debt index function totalSupply() public view override returns (uint256) { return ud(scaledTotalSupply()).mul(_pool.getNormalizedIncome()).unwrap(); } /// @notice The balance of an account scaled by the normalized debt index function balanceOf(address account) public view override returns (uint256) { uint256 accountBalance = super.balanceOf(account); if (accountBalance == 0) { return 0; } return ud(accountBalance).mul(_pool.getNormalizedIncome()).unwrap(); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import "forge-std/src/console2.sol"; // @notice Collections of protocol error messages. library Errors { // GENERAL /// @notice Unauthorized access error Unauthorized(); /// @notice Disabled functionality error FunctionalityDisabled(); /// @notice Functionality not supported error FunctionalityNotSupported(); /// @notice Invalid parameters passed to function error InvalidParams(); /// @notice ZeroAddress error ZeroAddress(); /// @notice Contract does not exist error ContractDoesNotExist(); /// @notice Invalid amount requested by caller error InvalidAmount(); /// @notice when parameter cannot be equal to zero error ParamCannotBeZero(); /// @notice ERC20 is not transferrable error TransferDisabled(); /// @notice Address doesn't have role error UnauthorizedRole(address account, string role); /// @notice Action disabled because contract is deprecated error Deprecated(); // ACCESS // NOTE: maybe this should be refactored into a generic Errors /// @notice Only the lending pool can call this function error OnlyLendingPool(); // COLLATERAL /// @notice Invalid collateral monitor update error InvalidCollateralMonitorUpdate(); error NoTellorValueRetrieved(uint256 timestamp); error StaleTellorValue(uint256 value, uint256 timestamp); error StaleTellorEVMCallTimestamp(uint256 callTimestamp); error CannotGoBackInTime(); error InvalidYieldClaimed(uint256 expectedYield, uint256 actualYield); // LENDING /// @notice Insufficient liquidity to fulfill action error InsufficientLiquidity(); /// @notice User doesn't have enough collateral backing their position error InsufficientCollateral(); /// @notice Requested borrow is not greater than minimum open borrow amount error InvalidMinimumOpenBorrow(); /// @notice Deposit cap exceeded error DepositCapExceeded(); /// @notice Max deposit per account exceeded error MaxDepositPerAccountExceeded(); // FLASH LOANS /// @notice Invalid flash loan balance error InvalidFlashLoanBalance(); /// @notice Invalid flash loan asset error InvalidFlashLoanAsset(); /// @notice Flash loan unpaid error InvalidPostFlashLoanBalance(); /// @notice Invalid flash loan fee error InsufficientFlashLoanFeeAmount(); /// @notice Flash loan recipient doesn't return success error InvalidFlashLoanRecipientReturn(); // ACCOUNTS /// @notice Account failed solvency check after some action. /// @dev The account's debt isn't sufficiently collateralized and/or the account is liquidatable. error AccountInsolvent(); /// @dev Account cannot be liquidated error AccountHealthy(); /// @notice Account is being liquidated error AccountBeingLiquidated(); /// @notice Account is not being liquidated error AccountNotBeingLiquidated(); /// @notice Account hasn't been created yet error AccountNotCreated(); // INVESTMENT /// @notice Account is not liquidatable error NotLiquidatable(); /// @notice Account is not repayable error NotRepayable(); /// @notice Account type invalid error InvalidAccountType(); /// @notice Interaction with a strategy that is not approved error StrategyNotApproved(); /// @notice Liquidator has no funds to repay error NoLiquidatorFunds(); /// @notice Requested profit is not claimable from account (if account has debt or not enough profit to fill request /// amount) error NotClaimableProfit(); /// @notice Used when Gelato automation task was already started error AlreadyStartedTask(); /// @notice Assets not received error WithdrawnAssetsNotReceived(); /////////////////////////// // Multi-step Strategies /////////////////////////// /// @notice Account is attempting to withdraw more strategy shares than their unlocked share balance. /// @dev An account's balanceOf(strategyShareToken) is their totalShareBalance. /// Since some strategies are multi-step, when a account withdraws, those shares are added to a separate variable /// known /// as their lockedShareBalance. /// A account's unlocked share balance when it comes to withdrawals is their totalShareBalance - lockedShareBalance. error PendingStrategyWithdrawal(address account); /// @notice Account cannot deposit into the same multi-step strategy until their previous deposit has cleared. error PendingStrategyDeposit(address account); ////////////////////////// /// OmegaGMXStrategyVault ////////////////////////// /// @notice When already exist a depositKey in the vault error MustNotHavePendingValue(); /// @notice When not sending eth to pay for the fee in a deposit or withdrawal error MustSendETHForExecutionFee(); /// Pyth error PythPriceFeedNotFound(address asset); error PythInvalidNonPositivePrice(address asset); } library BlastErrors { /// @dev For contracts that need to compound claimable yield onto themselves, they cannot claim with themselves as /// the recipient. /// To get around this, they claim to another contract that reflects the yield back to them. error InvalidReflection(uint256 expected, uint256 actual); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; /// @notice Store keys used by stores in a Governor contract (ProtocolGovernor, etc). library GovernorLib { /////////////// // COMMON /////////////// /// @notice Returns price of an asset given some address. Prices are denominated in the lending pool loan asset. bytes32 public constant PRICE_PROVIDER = keccak256(abi.encode("PRICE_PROVIDER")); /// @notice Address that receives fee generated by lending, accounts, and strategies bytes32 public constant FEE_COLLECTOR = keccak256(abi.encode("FEE_COLLECTOR")); bytes32 public constant STRATEGY_SLIPPAGE_MODEL = keccak256(abi.encode("STRATEGY_SLIPPAGE_MODEL")); /// @notice Address that is responsible for issuing gas reimbursements to protocol contracts bytes32 public constant GAS_TANK = keccak256(abi.encode("GAS_TANK")); /// @notice Lending Pool bytes32 public constant LENDING_POOL = keccak256(abi.encode("LENDING_POOL")); /// @notice Gelato Automate bytes32 public constant GELATO_AUTOMATE = keccak256(abi.encode("GELATO_AUTOMATE")); /// @notice Pyth Stable bytes32 public constant PYTH = keccak256(abi.encode("PYTH")); /// @notice Asset used to facilitate lending and borrowing. bytes32 public constant LEND_ASSET = keccak256(abi.encode("LEND_ASSET")); /// @notice Blast native contract implementing IBlast interface for configuring gas refunds and native ETH rebasing. bytes32 public constant BLAST = keccak256(abi.encode("BLAST")); /// @notice Blast native contract used on contract initialization to assign an operator that configures points /// received by that smart contract. bytes32 public constant BLAST_POINTS = keccak256(abi.encode("BLAST_POINTS")); /////////////// // FEES /////////////// bytes32 public constant LENDING_FEE = keccak256(abi.encode("LENDING_FEE")); bytes32 public constant FLASH_LOAN_FEE = keccak256(abi.encode("FLASH_LOAN_FEE")); /// @notice % taken from any funds used to repay debt during liquidating state. /* If an Account with 100 USDB Strategy position gets liquidated with protocolShare of 4%, liquidatorShare of 1%. If no slippage, 100 USDB is received by Repayment contract. Repayment contract is executed with: - 4 USDB going to protocol - 1 USDB going to liquidator - 95 USDB going to repay Account debt */ bytes32 public constant PROTOCOL_LIQUIDATION_SHARE = keccak256(abi.encode("PROTOCOL_LIQUIDATION_SHARE")); bytes32 public constant LIQUIDATOR_SHARE = keccak256(abi.encode("LIQUIDATOR_SHARE")); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import { SafeERC20, IERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { UD60x18 } from "@prb/math/src/UD60x18.sol"; library LendingLib { /// @notice The reserve state struct Reserve { /// @notice The address of the underlying asset used for deposits/borrows IERC20 asset; /// @notice The current balance of the asset in the pool uint256 assetBalance; /// @notice The current interest rate on borrowing UD60x18 borrowRate; /// @notice The liquidity rate, as defined in Aave Protocol white paper UD60x18 liquidityRate; /// @notice Liquidity Index as defined in Aave Protocol white paper UD60x18 liquidityIndex; /// @notice Borrow Index as defined in Aave Protocol white paper UD60x18 borrowIndex; /// @notice The last time the reserves state was updated uint256 lastUpdateTimestamp; } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import "./Errors.sol"; import "../interfaces/IProtocolGovernor.sol"; /// @notice List of permissions that can be granted to addresses. library Roles { /// @notice Can call the `sendYield` function on the JuiceLendingPool to redirect yield back to senders. bytes32 public constant LEND_YIELD_SENDER = keccak256(abi.encode("LEND_YIELD_SENDER")); /// @notice Gas tank depositor bytes32 public constant GAS_TANK_DEPOSITOR = keccak256(abi.encode("GAS_TANK_DEPOSITOR")); function _validateRole( IProtocolGovernor governor, address account, bytes32 role, string memory roleName ) internal view { if (!governor.hasRole(role, account)) { revert Errors.UnauthorizedRole(account, roleName); } } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import { UD60x18, ud } from "@prb/math/src/UD60x18.sol"; library AccountLib { /// @notice The type of account that can be created enum Type { EXTERNAL, // Accounts that allow taking funds out of the protocol INTERNAL // Accounts that require funds remain in the protocol } /// @notice The health of the account /// The collateral and equity values are all denominated in the debt amount. struct Health { uint256 debtAmount; uint256 collateralValue; uint256 investmentValue; bool isLiquidatable; bool hasBadDebt; } /// @notice Expected values resulting from a collateral liquidation. /// @param actualDebtToLiquidate the amount of debt to cover for the account /// @param collateralAmount the amount of collateral to receive /// @param bonusCollateral the amount of bonus collateral included in the collateralAmount struct CollateralLiquidation { uint256 actualDebtToLiquidate; uint256 collateralAmount; uint256 bonusCollateral; } /// @notice The state of an account's lending pool loan struct Loan { /// @notice The amount of debt the borrower has uint256 debtAmount; /// @notice The value of the borrowers collateral in debt token uint256 collateralValue; /// @notice The current loan to value ratio of the borrower UD60x18 ltv; /// @notice Borrower cannot perform a borrow if it puts their ltv over this amount UD60x18 maxLtv; } struct LiquidationStatus { bool isLiquidating; uint256 liquidationStartTime; } /* @notice Liquidator fee. @dev protocolShare + liquidatorShare = liquidationFee. liquidationFee is % deducted from liquidated funds before they are used towards repayment. */ struct LiquidationFee { UD60x18 protocolShare; UD60x18 liquidatorShare; } /// @notice struct CreateAccountProps { address owner; AccountLib.Type accountType; } /// @notice Custom meta txn for creating an account struct CreateAccountData { address owner; uint256 accountType; bytes signature; } /// @notice Data to sign when creating an account gaslessly struct CreateAccount { address owner; uint256 accountType; } }
// SPDX-License-Identifier: GPL-3.0 // Source: Aave V3 Core Protocol // Permalink: // https://github.com/aave/aave-v3-core/blob/6070e82d962d9b12835c88e68210d0e63f08d035/contracts/protocol/libraries/math/MathUtils.sol // Modifications: // - Added Slither comments to silence warnings from divide-before-multiply pragma solidity 0.8.24; import { UD60x18, ud, UNIT, uUNIT, ZERO } from "@prb/math/src/UD60x18.sol"; /** * @title MathUtils library * @notice Provides functions to perform linear and compounded interest calculations */ library MathUtils { /// @dev Used in token math to document rounding method being used. /// This is useful when we always want to round in favor of the protocol to disallow users to steal funds. enum ROUNDING { UP, DOWN } /// @dev Ignoring leap years uint256 public constant ONE_YEAR = 365 days; /** * @notice FV = P*e^(r*t) where P is 1 * @dev Function to calculate the interest using a compounded interest rate formula * @param rate The interest rate per anum, 1e18 precision * @param lastUpdateTimestamp The timestamp of the last update of the interest * @param currentTimestamp The current timestamp * @return The interest rate compounded during the timeDelta */ function calculateCompoundedInterest( UD60x18 rate, uint256 lastUpdateTimestamp, uint256 currentTimestamp ) internal pure returns (UD60x18) { UD60x18 principal = UNIT; uint256 elapsed = currentTimestamp - lastUpdateTimestamp; if (elapsed == 0) { return principal; } uint256 exponent = (elapsed * rate.unwrap()) / ONE_YEAR; return principal.mul(ud(exponent).exp()); } /** * @dev Calculates the compounded interest between the timestamp of the last update and the current block timestamp * @param rate The interest rate * @param lastUpdateTimestamp The timestamp from which the interest accumulation needs to be calculated * @return The interest rate compounded between lastUpdateTimestamp and current block timestamp * */ function calculateCompoundedInterest(UD60x18 rate, uint256 lastUpdateTimestamp) internal view returns (UD60x18) { return calculateCompoundedInterest(rate, lastUpdateTimestamp, block.timestamp); } /// @notice Converts a number with `inputDecimals`, to a number with given amount of decimals /// @param value The value to convert /// @param inputDecimals The amount of decimals the input value has /// @param targetDecimals The amount of decimals to convert to /// @return The converted value function scaleDecimals(uint256 value, uint8 inputDecimals, uint8 targetDecimals) internal pure returns (uint256) { if (targetDecimals == inputDecimals) return value; if (targetDecimals > inputDecimals) return value * (10 ** (targetDecimals - inputDecimals)); return value / (10 ** (inputDecimals - targetDecimals)); } /// @notice Converts a number with `inputDecimals`, to a number with given amount of decimals /// @param value The value to convert /// @param inputDecimals The amount of decimals the input value has /// @param targetDecimals The amount of decimals to convert to /// @return The converted value function scaleDecimals(int256 value, uint8 inputDecimals, uint8 targetDecimals) internal pure returns (int256) { if (targetDecimals == inputDecimals) return value; if (targetDecimals > inputDecimals) return value * int256(10 ** (targetDecimals - inputDecimals)); return value / int256(10 ** (inputDecimals - targetDecimals)); } /// @notice Converts a number with `decimals`, to a UD60x18 type /// @param value The value to convert /// @param decimals The amount of decimals the value has /// @return The number as a UD60x18 function fromTokenDecimals(uint256 value, uint8 decimals) internal pure returns (UD60x18) { return ud(scaleDecimals(value, decimals, 18)); } /// @notice Converts a UD60x18 number with `decimals`, to it's uint256 type scaled down. /// @param value The value to convert /// @param decimals The amount of decimals the value has /// @return The number as a scaled down uint256 function toTokenDecimals(UD60x18 value, uint8 decimals) internal pure returns (uint256) { return scaleDecimals(value.unwrap(), 18, decimals); } /// @notice Truncates a UD60x18 number down to the correct precision. /// @param value The value to convert /// @param decimals The amount of decimals the value has /// @return The truncated UD60x18 number function truncate(UD60x18 value, uint8 decimals) internal pure returns (UD60x18) { return fromTokenDecimals(toTokenDecimals(value, decimals), decimals); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import "../Errors.sol"; /// @title Address checker trait /// @notice Introduces methods and modifiers for checking addresses abstract contract AddressCheckerTrait { /// @dev Prevents a contract using an address if it is a zero address modifier nonZeroAddress(address _address) { if (_address == address(0)) { revert Errors.ZeroAddress(); } _; } /// @dev Prevents a contract using an address if it is either a zero address or is not an existing contract modifier nonZeroAddressAndContract(address _address) { if (_address == address(0)) { revert Errors.ZeroAddress(); } if (!_contractExists(_address)) { revert Errors.ContractDoesNotExist(); } _; } /// @notice Returns true if addr is a contract address /// @param addr The address to check function _contractExists(address addr) internal view returns (bool) { return addr.code.length > 0; } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import { UD60x18, ud, UNIT, ZERO } from "@prb/math/src/UD60x18.sol"; import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"; import "@openzeppelin/contracts/access/Ownable2Step.sol"; import "../libraries/Errors.sol"; import "../libraries/traits/AddressCheckerTrait.sol"; import "../libraries/GovernorLib.sol"; import "../interfaces/IProtocolGovernor.sol"; import "../libraries/Roles.sol"; abstract contract ProtocolGovernorEvents { event FeeUpdated(bytes32 indexed id, UD60x18 newLiquidationFee); event AddressSet(bytes32 indexed id, address newAddress); event ImmutableAddressSet(bytes32 indexed id, address newAddress); event ManagerStatusUpdated(address indexed manager, bool status); event InvestmentAccountRegistered(address indexed account); event InvestmentAccountCreditIncreased(address indexed account, uint256 amount); event InvestmentAccountCreditDecreased(address indexed account, uint256 amount); event RoleSet(bytes32 indexed role, address indexed account, bool status); } /** * @title ProtocolGovernor * @dev Allows for storing and management of common protocol data (roles, addresses, configuration). */ contract ProtocolGovernor is Ownable2Step, AddressCheckerTrait, ProtocolGovernorEvents, IProtocolGovernor { /// @notice Map of contract names to their contract addresses. mapping(bytes32 => address) internal _addresses; /// @notice Immutable map of contract names to their contract addresses. mapping(bytes32 => address) internal _immutableAddresses; /// @notice Map of fee IDs to their fees. /// @dev Fees cannot be greater than or equal to 100%. mapping(bytes32 => UD60x18) internal _fees; /// @notice Managers that can register accounts. mapping(address => bool) internal _managers; /// @notice Tracking roles granted to addresses. mapping(address => mapping(bytes32 => bool)) internal _roles; /// @notice If true, the protocol is deprecated and no longer accepting inflows (lending pool deposit, borrow, /// strategy deposit should be disabled). bool private _isProtocolDeprecated; /// @dev Parameters for initializing the Protocol Governor struct InitParams { address lendAsset; // Address of the asset address feeCollector; address pyth; } constructor(InitParams memory params) Ownable(msg.sender) nonZeroAddress(params.feeCollector) nonZeroAddressAndContract(params.lendAsset) nonZeroAddressAndContract(params.pyth) { _setImmutableAddress(GovernorLib.LEND_ASSET, params.lendAsset); _setImmutableAddress(GovernorLib.PYTH, params.pyth); _setAddress(GovernorLib.FEE_COLLECTOR, params.feeCollector); _fees[GovernorLib.LENDING_FEE] = ud(0.1e18); _fees[GovernorLib.PROTOCOL_LIQUIDATION_SHARE] = ud(0.05e18); _fees[GovernorLib.LIQUIDATOR_SHARE] = ZERO; _fees[GovernorLib.FLASH_LOAN_FEE] = ud(0); } /** * @dev Only allows addresses that are the protocol admin to call the function. */ modifier onlyProtocolOwner() { if (owner() != _msgSender()) { revert Errors.UnauthorizedRole(_msgSender(), "PROTOCOL_ADMIN"); } _; } modifier onlyManager() { if (!_managers[_msgSender()]) { revert Errors.UnauthorizedRole(_msgSender(), "ACCOUNT_MANAGER"); } _; } function getOwner() external view returns (address) { return Ownable.owner(); } function setProtocolDeprecatedStatus(bool status) external onlyProtocolOwner { _isProtocolDeprecated = status; } function isProtocolDeprecated() external view returns (bool) { return _isProtocolDeprecated; } //////////////////// // ADDRESS PROVIDER ////////////////////// /// @dev Sets an address by id function setAddress(bytes32 id, address addr) public onlyProtocolOwner { _setAddress(id, addr); } function _setAddress(bytes32 id, address addr) internal nonZeroAddress(addr) { _addresses[id] = addr; emit AddressSet(id, addr); } // @dev Initialize an address by id, this cannot be changed after being set. function setImmutableAddress(bytes32 id, address addr) public onlyProtocolOwner { _setImmutableAddress(id, addr); } function _setImmutableAddress(bytes32 id, address addr) internal nonZeroAddress(addr) { if (_immutableAddresses[id] != address(0)) { revert Errors.InvalidParams(); } _immutableAddresses[id] = addr; emit ImmutableAddressSet(id, addr); } /// @dev Returns an address by id function getAddress(bytes32 id) external view returns (address) { return _addresses[id]; } /// @dev Returns an immutable address by id function getImmutableAddress(bytes32 id) external view returns (address) { return _immutableAddresses[id]; } /////////////////////// // FEE CONFIGURATION /////////////////////// /// @notice newFee cannot be 100% (it must be < 1e18) function setFee(bytes32 id, UD60x18 newFee) external onlyProtocolOwner { if (newFee >= UNIT) { revert Errors.InvalidParams(); } _fees[id] = newFee; emit FeeUpdated(id, newFee); } function getFee(bytes32 id) external view returns (UD60x18) { return _fees[id]; } ///////////////////// // Protocol wide ACL ///////////////////// function grantRole(bytes32 role, address account) external onlyProtocolOwner { _roles[account][role] = true; emit RoleSet(role, account, true); } function revokeRole(bytes32 role, address account) external onlyProtocolOwner { _roles[account][role] = false; emit RoleSet(role, account, false); } function hasRole(bytes32 role, address account) external view returns (bool) { return _roles[account][role]; } function updateAccountManagerStatus(address manager, bool status) external onlyProtocolOwner { _managers[manager] = status; emit ManagerStatusUpdated(manager, status); } function isAccountManager(address manager) external view returns (bool) { return _managers[manager]; } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.24; import "./ProtocolGovernor.sol"; import { Context } from "@openzeppelin/contracts/utils/Context.sol"; import "@pythnetwork/pyth-sdk-solidity/IPyth.sol"; import { Errors } from "../libraries/Errors.sol"; import "../libraries/traits/AddressCheckerTrait.sol"; import { UD60x18, ud } from "@prb/math/src/UD60x18.sol"; import "../interfaces/IGasTank.sol"; import "../interfaces/IAssetPriceProvider.sol"; import "../interfaces/IProtocolGovernor.sol"; import "../interfaces/IStrategySlippageModel.sol"; import "../libraries/GovernorLib.sol"; import "../libraries/Roles.sol"; /** * @title ProtocolModule * @dev Contract for shared protocol functionality */ abstract contract ProtocolModule is Context, AddressCheckerTrait { using Roles for IProtocolGovernor; IProtocolGovernor internal immutable _protocolGovernor; /** * @dev Constructor that initializes the role store for this contract. * @param protocolGovernor_ The contract instance to use as the role store. */ constructor(address protocolGovernor_) { _protocolGovernor = IProtocolGovernor(protocolGovernor_); } ///////////////// /// PERMISSIONS ///////////////// modifier whenProtocolNotDeprecated() { require(!_protocolGovernor.isProtocolDeprecated(), "PROTOCOL_DEPRECATED"); _; } /** * @dev Only allows the contract's own address to call the function. */ modifier onlySelf() { if (msg.sender != address(this)) { revert Errors.UnauthorizedRole(msg.sender, "SELF"); } _; } modifier onlyAccountManager() { if (!_protocolGovernor.isAccountManager(_msgSender())) { revert Errors.UnauthorizedRole(_msgSender(), "ACCOUNT_MANAGER"); } _; } modifier onlyGasTankDepositor() { _protocolGovernor._validateRole(msg.sender, Roles.GAS_TANK_DEPOSITOR, "GAS_TANK_DEPOSITOR"); _; } /** * @dev Only allows addresses that are the protocol admin to call the function. */ modifier onlyOwner() { if (!_isOwner(_msgSender())) { revert Errors.UnauthorizedRole(_msgSender(), "PROTOCOL_ADMIN"); } _; } function _isOwner(address account) internal view returns (bool) { if (_protocolGovernor.getOwner() != account) { return false; } return true; } ///////////////////// // ADDRESS PROVIDER ///////////////////// function getProtocolGovernor() external view virtual returns (address) { return address(_protocolGovernor); } /// @notice Returns fee collector function _getFeeCollector() internal view returns (address) { return _protocolGovernor.getAddress(GovernorLib.FEE_COLLECTOR); } /// @notice Returns asset price provider address. /// @dev This price provider MUST return the asset prices denominated in lend asset. /// @dev If lend asset is USDC, asset prices must be in USDC. function _getPriceProvider() internal view returns (IAssetPriceProvider) { return IAssetPriceProvider(_protocolGovernor.getAddress(GovernorLib.PRICE_PROVIDER)); } /// @notice Gas Tank function _getGasTank() internal view returns (IGasTank) { return IGasTank(_protocolGovernor.getAddress(GovernorLib.GAS_TANK)); } function _getPyth() internal view returns (IPyth) { return IPyth(_protocolGovernor.getImmutableAddress(GovernorLib.PYTH)); } function _getLendAsset() internal view returns (address) { return _protocolGovernor.getImmutableAddress(GovernorLib.LEND_ASSET); } function _getLendingPool() internal view returns (address) { return _protocolGovernor.getImmutableAddress(GovernorLib.LENDING_POOL); } function _getSlippageModel() internal view returns (IStrategySlippageModel) { return IStrategySlippageModel(_protocolGovernor.getAddress(GovernorLib.STRATEGY_SLIPPAGE_MODEL)); } // FEE CONFIGURATION ////////////////////// function _lendingFee() internal view returns (UD60x18) { return _protocolGovernor.getFee(GovernorLib.LENDING_FEE); } function _flashLoanFee() internal view returns (UD60x18) { return _protocolGovernor.getFee(GovernorLib.FLASH_LOAN_FEE); } function _protocolLiquidationShare() internal view returns (UD60x18) { return _protocolGovernor.getFee(GovernorLib.PROTOCOL_LIQUIDATION_SHARE); } function _liquidatorShare() internal view returns (UD60x18) { return _protocolGovernor.getFee(GovernorLib.LIQUIDATOR_SHARE); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.4.22 <0.9.0; /// @dev The original console.sol uses `int` and `uint` for computing function selectors, but it should /// use `int256` and `uint256`. This modified version fixes that. This version is recommended /// over `console.sol` if you don't need compatibility with Hardhat as the logs will show up in /// forge stack traces. If you do need compatibility with Hardhat, you must use `console.sol`. /// Reference: https://github.com/NomicFoundation/hardhat/issues/2178 library console2 { address constant CONSOLE_ADDRESS = address(0x000000000000000000636F6e736F6c652e6c6f67); function _castLogPayloadViewToPure( function(bytes memory) internal view fnIn ) internal pure returns (function(bytes memory) internal pure fnOut) { assembly { fnOut := fnIn } } function _sendLogPayload(bytes memory payload) internal pure { _castLogPayloadViewToPure(_sendLogPayloadView)(payload); } function _sendLogPayloadView(bytes memory payload) private view { uint256 payloadLength = payload.length; address consoleAddress = CONSOLE_ADDRESS; /// @solidity memory-safe-assembly assembly { let payloadStart := add(payload, 32) let r := staticcall(gas(), consoleAddress, payloadStart, payloadLength, 0, 0) } } function log() internal pure { _sendLogPayload(abi.encodeWithSignature("log()")); } function logInt(int256 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(int256)", p0)); } function logUint(uint256 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256)", p0)); } function logString(string memory p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string)", p0)); } function logBool(bool p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool)", p0)); } function logAddress(address p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address)", p0)); } function logBytes(bytes memory p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes)", p0)); } function logBytes1(bytes1 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes1)", p0)); } function logBytes2(bytes2 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes2)", p0)); } function logBytes3(bytes3 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes3)", p0)); } function logBytes4(bytes4 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes4)", p0)); } function logBytes5(bytes5 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes5)", p0)); } function logBytes6(bytes6 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes6)", p0)); } function logBytes7(bytes7 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes7)", p0)); } function logBytes8(bytes8 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes8)", p0)); } function logBytes9(bytes9 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes9)", p0)); } function logBytes10(bytes10 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes10)", p0)); } function logBytes11(bytes11 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes11)", p0)); } function logBytes12(bytes12 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes12)", p0)); } function logBytes13(bytes13 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes13)", p0)); } function logBytes14(bytes14 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes14)", p0)); } function logBytes15(bytes15 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes15)", p0)); } function logBytes16(bytes16 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes16)", p0)); } function logBytes17(bytes17 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes17)", p0)); } function logBytes18(bytes18 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes18)", p0)); } function logBytes19(bytes19 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes19)", p0)); } function logBytes20(bytes20 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes20)", p0)); } function logBytes21(bytes21 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes21)", p0)); } function logBytes22(bytes22 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes22)", p0)); } function logBytes23(bytes23 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes23)", p0)); } function logBytes24(bytes24 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes24)", p0)); } function logBytes25(bytes25 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes25)", p0)); } function logBytes26(bytes26 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes26)", p0)); } function logBytes27(bytes27 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes27)", p0)); } function logBytes28(bytes28 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes28)", p0)); } function logBytes29(bytes29 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes29)", p0)); } function logBytes30(bytes30 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes30)", p0)); } function logBytes31(bytes31 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes31)", p0)); } function logBytes32(bytes32 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes32)", p0)); } function log(uint256 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256)", p0)); } function log(int256 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(int256)", p0)); } function log(string memory p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string)", p0)); } function log(bool p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool)", p0)); } function log(address p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address)", p0)); } function log(uint256 p0, uint256 p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256)", p0, p1)); } function log(uint256 p0, string memory p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string)", p0, p1)); } function log(uint256 p0, bool p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool)", p0, p1)); } function log(uint256 p0, address p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address)", p0, p1)); } function log(string memory p0, uint256 p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256)", p0, p1)); } function log(string memory p0, int256 p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,int256)", p0, p1)); } function log(string memory p0, string memory p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string)", p0, p1)); } function log(string memory p0, bool p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool)", p0, p1)); } function log(string memory p0, address p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address)", p0, p1)); } function log(bool p0, uint256 p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256)", p0, p1)); } function log(bool p0, string memory p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string)", p0, p1)); } function log(bool p0, bool p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool)", p0, p1)); } function log(bool p0, address p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address)", p0, p1)); } function log(address p0, uint256 p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256)", p0, p1)); } function log(address p0, string memory p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string)", p0, p1)); } function log(address p0, bool p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool)", p0, p1)); } function log(address p0, address p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address)", p0, p1)); } function log(uint256 p0, uint256 p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256)", p0, p1, p2)); } function log(uint256 p0, uint256 p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string)", p0, p1, p2)); } function log(uint256 p0, uint256 p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool)", p0, p1, p2)); } function log(uint256 p0, uint256 p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address)", p0, p1, p2)); } function log(uint256 p0, string memory p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256)", p0, p1, p2)); } function log(uint256 p0, string memory p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string)", p0, p1, p2)); } function log(uint256 p0, string memory p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool)", p0, p1, p2)); } function log(uint256 p0, string memory p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address)", p0, p1, p2)); } function log(uint256 p0, bool p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256)", p0, p1, p2)); } function log(uint256 p0, bool p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string)", p0, p1, p2)); } function log(uint256 p0, bool p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool)", p0, p1, p2)); } function log(uint256 p0, bool p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address)", p0, p1, p2)); } function log(uint256 p0, address p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256)", p0, p1, p2)); } function log(uint256 p0, address p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string)", p0, p1, p2)); } function log(uint256 p0, address p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool)", p0, p1, p2)); } function log(uint256 p0, address p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address)", p0, p1, p2)); } function log(string memory p0, uint256 p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256)", p0, p1, p2)); } function log(string memory p0, uint256 p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string)", p0, p1, p2)); } function log(string memory p0, uint256 p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool)", p0, p1, p2)); } function log(string memory p0, uint256 p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address)", p0, p1, p2)); } function log(string memory p0, string memory p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256)", p0, p1, p2)); } function log(string memory p0, string memory p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,string)", p0, p1, p2)); } function log(string memory p0, string memory p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool)", p0, p1, p2)); } function log(string memory p0, string memory p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,address)", p0, p1, p2)); } function log(string memory p0, bool p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256)", p0, p1, p2)); } function log(string memory p0, bool p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string)", p0, p1, p2)); } function log(string memory p0, bool p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool)", p0, p1, p2)); } function log(string memory p0, bool p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address)", p0, p1, p2)); } function log(string memory p0, address p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256)", p0, p1, p2)); } function log(string memory p0, address p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,string)", p0, p1, p2)); } function log(string memory p0, address p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool)", p0, p1, p2)); } function log(string memory p0, address p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,address)", p0, p1, p2)); } function log(bool p0, uint256 p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256)", p0, p1, p2)); } function log(bool p0, uint256 p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string)", p0, p1, p2)); } function log(bool p0, uint256 p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool)", p0, p1, p2)); } function log(bool p0, uint256 p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address)", p0, p1, p2)); } function log(bool p0, string memory p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256)", p0, p1, p2)); } function log(bool p0, string memory p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string)", p0, p1, p2)); } function log(bool p0, string memory p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool)", p0, p1, p2)); } function log(bool p0, string memory p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address)", p0, p1, p2)); } function log(bool p0, bool p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256)", p0, p1, p2)); } function log(bool p0, bool p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string)", p0, p1, p2)); } function log(bool p0, bool p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool)", p0, p1, p2)); } function log(bool p0, bool p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address)", p0, p1, p2)); } function log(bool p0, address p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256)", p0, p1, p2)); } function log(bool p0, address p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string)", p0, p1, p2)); } function log(bool p0, address p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool)", p0, p1, p2)); } function log(bool p0, address p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address)", p0, p1, p2)); } function log(address p0, uint256 p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256)", p0, p1, p2)); } function log(address p0, uint256 p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string)", p0, p1, p2)); } function log(address p0, uint256 p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool)", p0, p1, p2)); } function log(address p0, uint256 p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address)", p0, p1, p2)); } function log(address p0, string memory p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256)", p0, p1, p2)); } function log(address p0, string memory p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,string)", p0, p1, p2)); } function log(address p0, string memory p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool)", p0, p1, p2)); } function log(address p0, string memory p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,address)", p0, p1, p2)); } function log(address p0, bool p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256)", p0, p1, p2)); } function log(address p0, bool p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string)", p0, p1, p2)); } function log(address p0, bool p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool)", p0, p1, p2)); } function log(address p0, bool p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address)", p0, p1, p2)); } function log(address p0, address p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256)", p0, p1, p2)); } function log(address p0, address p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,string)", p0, p1, p2)); } function log(address p0, address p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool)", p0, p1, p2)); } function log(address p0, address p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,address)", p0, p1, p2)); } function log(uint256 p0, uint256 p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,string)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,bool)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,address)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,string)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,bool)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,address)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,string)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,bool)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,address)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,string)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,bool)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,address)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,string)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,bool)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,address)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,string)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,bool)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,address)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,string)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,bool)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,address)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,string)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,bool)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,address)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,string)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,bool)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,address)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,string)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,bool)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,address)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,string)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,bool)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,address)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,string)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,bool)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,address)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,string)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,bool)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,address)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,string)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,bool)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,address)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,string)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,bool)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,address)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,string)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,bool)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,address)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,uint256)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,string)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,address)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,uint256)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,string)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,address)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,uint256)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,uint256)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,string)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,uint256)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,uint256)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,uint256)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,uint256)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,uint256)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,uint256)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,uint256)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,uint256)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,uint256)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,uint256)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,uint256)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,uint256)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,address)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,uint256)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,string)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,bool)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,address)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,uint256)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,string)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,bool)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,address)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,uint256)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,string)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,address)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,uint256)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,string)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,bool)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,uint256)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,uint256)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,uint256)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,uint256)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,uint256)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,uint256)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,uint256)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,uint256)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,uint256)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,uint256)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,uint256)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,uint256)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,address)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,uint256)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,string)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,bool)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,address)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,uint256)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,string)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,bool)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,address)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,uint256)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,string)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,bool)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,address)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,uint256)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,string)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,bool)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,uint256)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,uint256)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,uint256)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,uint256)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,uint256)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,uint256)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,uint256)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,uint256)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,address)", p0, p1, p2, p3)); } function log(address p0, address p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,uint256)", p0, p1, p2, p3)); } function log(address p0, address p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,string)", p0, p1, p2, p3)); } function log(address p0, address p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,address)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,uint256)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,string)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,address)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,uint256)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,string)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,address)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,uint256)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,string)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,address)", p0, p1, p2, p3)); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Simple ERC20 + EIP-2612 implementation. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC20.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol) /// /// @dev Note: /// - The ERC20 standard allows minting and transferring to and from the zero address, /// minting and transferring zero tokens, as well as self-approvals. /// For performance, this implementation WILL NOT revert for such actions. /// Please add any checks with overrides if desired. /// - The `permit` function uses the ecrecover precompile (0x1). /// /// If you are overriding: /// - NEVER violate the ERC20 invariant: /// the total sum of all balances must be equal to `totalSupply()`. /// - Check that the overridden function is actually used in the function you want to /// change the behavior of. Much of the code has been manually inlined for performance. abstract contract ERC20 { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The total supply has overflowed. error TotalSupplyOverflow(); /// @dev The allowance has overflowed. error AllowanceOverflow(); /// @dev The allowance has underflowed. error AllowanceUnderflow(); /// @dev Insufficient balance. error InsufficientBalance(); /// @dev Insufficient allowance. error InsufficientAllowance(); /// @dev The permit is invalid. error InvalidPermit(); /// @dev The permit has expired. error PermitExpired(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EVENTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Emitted when `amount` tokens is transferred from `from` to `to`. event Transfer(address indexed from, address indexed to, uint256 amount); /// @dev Emitted when `amount` tokens is approved by `owner` to be used by `spender`. event Approval(address indexed owner, address indexed spender, uint256 amount); /// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`. uint256 private constant _TRANSFER_EVENT_SIGNATURE = 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; /// @dev `keccak256(bytes("Approval(address,address,uint256)"))`. uint256 private constant _APPROVAL_EVENT_SIGNATURE = 0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STORAGE */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The storage slot for the total supply. uint256 private constant _TOTAL_SUPPLY_SLOT = 0x05345cdf77eb68f44c; /// @dev The balance slot of `owner` is given by: /// ``` /// mstore(0x0c, _BALANCE_SLOT_SEED) /// mstore(0x00, owner) /// let balanceSlot := keccak256(0x0c, 0x20) /// ``` uint256 private constant _BALANCE_SLOT_SEED = 0x87a211a2; /// @dev The allowance slot of (`owner`, `spender`) is given by: /// ``` /// mstore(0x20, spender) /// mstore(0x0c, _ALLOWANCE_SLOT_SEED) /// mstore(0x00, owner) /// let allowanceSlot := keccak256(0x0c, 0x34) /// ``` uint256 private constant _ALLOWANCE_SLOT_SEED = 0x7f5e9f20; /// @dev The nonce slot of `owner` is given by: /// ``` /// mstore(0x0c, _NONCES_SLOT_SEED) /// mstore(0x00, owner) /// let nonceSlot := keccak256(0x0c, 0x20) /// ``` uint256 private constant _NONCES_SLOT_SEED = 0x38377508; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev `(_NONCES_SLOT_SEED << 16) | 0x1901`. uint256 private constant _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX = 0x383775081901; /// @dev `keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")`. bytes32 private constant _DOMAIN_TYPEHASH = 0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f; /// @dev `keccak256("1")`. bytes32 private constant _VERSION_HASH = 0xc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6; /// @dev `keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")`. bytes32 private constant _PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC20 METADATA */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the name of the token. function name() public view virtual returns (string memory); /// @dev Returns the symbol of the token. function symbol() public view virtual returns (string memory); /// @dev Returns the decimals places of the token. function decimals() public view virtual returns (uint8) { return 18; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC20 */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the amount of tokens in existence. function totalSupply() public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { result := sload(_TOTAL_SUPPLY_SLOT) } } /// @dev Returns the amount of tokens owned by `owner`. function balanceOf(address owner) public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { mstore(0x0c, _BALANCE_SLOT_SEED) mstore(0x00, owner) result := sload(keccak256(0x0c, 0x20)) } } /// @dev Returns the amount of tokens that `spender` can spend on behalf of `owner`. function allowance(address owner, address spender) public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { mstore(0x20, spender) mstore(0x0c, _ALLOWANCE_SLOT_SEED) mstore(0x00, owner) result := sload(keccak256(0x0c, 0x34)) } } /// @dev Sets `amount` as the allowance of `spender` over the caller's tokens. /// /// Emits a {Approval} event. function approve(address spender, uint256 amount) public virtual returns (bool) { /// @solidity memory-safe-assembly assembly { // Compute the allowance slot and store the amount. mstore(0x20, spender) mstore(0x0c, _ALLOWANCE_SLOT_SEED) mstore(0x00, caller()) sstore(keccak256(0x0c, 0x34), amount) // Emit the {Approval} event. mstore(0x00, amount) log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, caller(), shr(96, mload(0x2c))) } return true; } /// @dev Transfer `amount` tokens from the caller to `to`. /// /// Requirements: /// - `from` must at least have `amount`. /// /// Emits a {Transfer} event. function transfer(address to, uint256 amount) public virtual returns (bool) { _beforeTokenTransfer(msg.sender, to, amount); /// @solidity memory-safe-assembly assembly { // Compute the balance slot and load its value. mstore(0x0c, _BALANCE_SLOT_SEED) mstore(0x00, caller()) let fromBalanceSlot := keccak256(0x0c, 0x20) let fromBalance := sload(fromBalanceSlot) // Revert if insufficient balance. if gt(amount, fromBalance) { mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`. revert(0x1c, 0x04) } // Subtract and store the updated balance. sstore(fromBalanceSlot, sub(fromBalance, amount)) // Compute the balance slot of `to`. mstore(0x00, to) let toBalanceSlot := keccak256(0x0c, 0x20) // Add and store the updated balance of `to`. // Will not overflow because the sum of all user balances // cannot exceed the maximum uint256 value. sstore(toBalanceSlot, add(sload(toBalanceSlot), amount)) // Emit the {Transfer} event. mstore(0x20, amount) log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, caller(), shr(96, mload(0x0c))) } _afterTokenTransfer(msg.sender, to, amount); return true; } /// @dev Transfers `amount` tokens from `from` to `to`. /// /// Note: Does not update the allowance if it is the maximum uint256 value. /// /// Requirements: /// - `from` must at least have `amount`. /// - The caller must have at least `amount` of allowance to transfer the tokens of `from`. /// /// Emits a {Transfer} event. function transferFrom(address from, address to, uint256 amount) public virtual returns (bool) { _beforeTokenTransfer(from, to, amount); /// @solidity memory-safe-assembly assembly { let from_ := shl(96, from) // Compute the allowance slot and load its value. mstore(0x20, caller()) mstore(0x0c, or(from_, _ALLOWANCE_SLOT_SEED)) let allowanceSlot := keccak256(0x0c, 0x34) let allowance_ := sload(allowanceSlot) // If the allowance is not the maximum uint256 value. if add(allowance_, 1) { // Revert if the amount to be transferred exceeds the allowance. if gt(amount, allowance_) { mstore(0x00, 0x13be252b) // `InsufficientAllowance()`. revert(0x1c, 0x04) } // Subtract and store the updated allowance. sstore(allowanceSlot, sub(allowance_, amount)) } // Compute the balance slot and load its value. mstore(0x0c, or(from_, _BALANCE_SLOT_SEED)) let fromBalanceSlot := keccak256(0x0c, 0x20) let fromBalance := sload(fromBalanceSlot) // Revert if insufficient balance. if gt(amount, fromBalance) { mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`. revert(0x1c, 0x04) } // Subtract and store the updated balance. sstore(fromBalanceSlot, sub(fromBalance, amount)) // Compute the balance slot of `to`. mstore(0x00, to) let toBalanceSlot := keccak256(0x0c, 0x20) // Add and store the updated balance of `to`. // Will not overflow because the sum of all user balances // cannot exceed the maximum uint256 value. sstore(toBalanceSlot, add(sload(toBalanceSlot), amount)) // Emit the {Transfer} event. mstore(0x20, amount) log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c))) } _afterTokenTransfer(from, to, amount); return true; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EIP-2612 */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev For more performance, override to return the constant value /// of `keccak256(bytes(name()))` if `name()` will never change. function _constantNameHash() internal view virtual returns (bytes32 result) {} /// @dev Returns the current nonce for `owner`. /// This value is used to compute the signature for EIP-2612 permit. function nonces(address owner) public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { // Compute the nonce slot and load its value. mstore(0x0c, _NONCES_SLOT_SEED) mstore(0x00, owner) result := sload(keccak256(0x0c, 0x20)) } } /// @dev Sets `value` as the allowance of `spender` over the tokens of `owner`, /// authorized by a signed approval by `owner`. /// /// Emits a {Approval} event. function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { bytes32 nameHash = _constantNameHash(); // We simply calculate it on-the-fly to allow for cases where the `name` may change. if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name())); /// @solidity memory-safe-assembly assembly { // Revert if the block timestamp is greater than `deadline`. if gt(timestamp(), deadline) { mstore(0x00, 0x1a15a3cc) // `PermitExpired()`. revert(0x1c, 0x04) } let m := mload(0x40) // Grab the free memory pointer. // Clean the upper 96 bits. owner := shr(96, shl(96, owner)) spender := shr(96, shl(96, spender)) // Compute the nonce slot and load its value. mstore(0x0e, _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX) mstore(0x00, owner) let nonceSlot := keccak256(0x0c, 0x20) let nonceValue := sload(nonceSlot) // Prepare the domain separator. mstore(m, _DOMAIN_TYPEHASH) mstore(add(m, 0x20), nameHash) mstore(add(m, 0x40), _VERSION_HASH) mstore(add(m, 0x60), chainid()) mstore(add(m, 0x80), address()) mstore(0x2e, keccak256(m, 0xa0)) // Prepare the struct hash. mstore(m, _PERMIT_TYPEHASH) mstore(add(m, 0x20), owner) mstore(add(m, 0x40), spender) mstore(add(m, 0x60), value) mstore(add(m, 0x80), nonceValue) mstore(add(m, 0xa0), deadline) mstore(0x4e, keccak256(m, 0xc0)) // Prepare the ecrecover calldata. mstore(0x00, keccak256(0x2c, 0x42)) mstore(0x20, and(0xff, v)) mstore(0x40, r) mstore(0x60, s) let t := staticcall(gas(), 1, 0, 0x80, 0x20, 0x20) // If the ecrecover fails, the returndatasize will be 0x00, // `owner` will be checked if it equals the hash at 0x00, // which evaluates to false (i.e. 0), and we will revert. // If the ecrecover succeeds, the returndatasize will be 0x20, // `owner` will be compared against the returned address at 0x20. if iszero(eq(mload(returndatasize()), owner)) { mstore(0x00, 0xddafbaef) // `InvalidPermit()`. revert(0x1c, 0x04) } // Increment and store the updated nonce. sstore(nonceSlot, add(nonceValue, t)) // `t` is 1 if ecrecover succeeds. // Compute the allowance slot and store the value. // The `owner` is already at slot 0x20. mstore(0x40, or(shl(160, _ALLOWANCE_SLOT_SEED), spender)) sstore(keccak256(0x2c, 0x34), value) // Emit the {Approval} event. log3(add(m, 0x60), 0x20, _APPROVAL_EVENT_SIGNATURE, owner, spender) mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero pointer. } } /// @dev Returns the EIP-712 domain separator for the EIP-2612 permit. function DOMAIN_SEPARATOR() public view virtual returns (bytes32 result) { bytes32 nameHash = _constantNameHash(); // We simply calculate it on-the-fly to allow for cases where the `name` may change. if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name())); /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Grab the free memory pointer. mstore(m, _DOMAIN_TYPEHASH) mstore(add(m, 0x20), nameHash) mstore(add(m, 0x40), _VERSION_HASH) mstore(add(m, 0x60), chainid()) mstore(add(m, 0x80), address()) result := keccak256(m, 0xa0) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL MINT FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Mints `amount` tokens to `to`, increasing the total supply. /// /// Emits a {Transfer} event. function _mint(address to, uint256 amount) internal virtual { _beforeTokenTransfer(address(0), to, amount); /// @solidity memory-safe-assembly assembly { let totalSupplyBefore := sload(_TOTAL_SUPPLY_SLOT) let totalSupplyAfter := add(totalSupplyBefore, amount) // Revert if the total supply overflows. if lt(totalSupplyAfter, totalSupplyBefore) { mstore(0x00, 0xe5cfe957) // `TotalSupplyOverflow()`. revert(0x1c, 0x04) } // Store the updated total supply. sstore(_TOTAL_SUPPLY_SLOT, totalSupplyAfter) // Compute the balance slot and load its value. mstore(0x0c, _BALANCE_SLOT_SEED) mstore(0x00, to) let toBalanceSlot := keccak256(0x0c, 0x20) // Add and store the updated balance. sstore(toBalanceSlot, add(sload(toBalanceSlot), amount)) // Emit the {Transfer} event. mstore(0x20, amount) log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, 0, shr(96, mload(0x0c))) } _afterTokenTransfer(address(0), to, amount); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL BURN FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Burns `amount` tokens from `from`, reducing the total supply. /// /// Emits a {Transfer} event. function _burn(address from, uint256 amount) internal virtual { _beforeTokenTransfer(from, address(0), amount); /// @solidity memory-safe-assembly assembly { // Compute the balance slot and load its value. mstore(0x0c, _BALANCE_SLOT_SEED) mstore(0x00, from) let fromBalanceSlot := keccak256(0x0c, 0x20) let fromBalance := sload(fromBalanceSlot) // Revert if insufficient balance. if gt(amount, fromBalance) { mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`. revert(0x1c, 0x04) } // Subtract and store the updated balance. sstore(fromBalanceSlot, sub(fromBalance, amount)) // Subtract and store the updated total supply. sstore(_TOTAL_SUPPLY_SLOT, sub(sload(_TOTAL_SUPPLY_SLOT), amount)) // Emit the {Transfer} event. mstore(0x00, amount) log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, shl(96, from)), 0) } _afterTokenTransfer(from, address(0), amount); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL TRANSFER FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Moves `amount` of tokens from `from` to `to`. function _transfer(address from, address to, uint256 amount) internal virtual { _beforeTokenTransfer(from, to, amount); /// @solidity memory-safe-assembly assembly { let from_ := shl(96, from) // Compute the balance slot and load its value. mstore(0x0c, or(from_, _BALANCE_SLOT_SEED)) let fromBalanceSlot := keccak256(0x0c, 0x20) let fromBalance := sload(fromBalanceSlot) // Revert if insufficient balance. if gt(amount, fromBalance) { mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`. revert(0x1c, 0x04) } // Subtract and store the updated balance. sstore(fromBalanceSlot, sub(fromBalance, amount)) // Compute the balance slot of `to`. mstore(0x00, to) let toBalanceSlot := keccak256(0x0c, 0x20) // Add and store the updated balance of `to`. // Will not overflow because the sum of all user balances // cannot exceed the maximum uint256 value. sstore(toBalanceSlot, add(sload(toBalanceSlot), amount)) // Emit the {Transfer} event. mstore(0x20, amount) log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c))) } _afterTokenTransfer(from, to, amount); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL ALLOWANCE FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Updates the allowance of `owner` for `spender` based on spent `amount`. function _spendAllowance(address owner, address spender, uint256 amount) internal virtual { /// @solidity memory-safe-assembly assembly { // Compute the allowance slot and load its value. mstore(0x20, spender) mstore(0x0c, _ALLOWANCE_SLOT_SEED) mstore(0x00, owner) let allowanceSlot := keccak256(0x0c, 0x34) let allowance_ := sload(allowanceSlot) // If the allowance is not the maximum uint256 value. if add(allowance_, 1) { // Revert if the amount to be transferred exceeds the allowance. if gt(amount, allowance_) { mstore(0x00, 0x13be252b) // `InsufficientAllowance()`. revert(0x1c, 0x04) } // Subtract and store the updated allowance. sstore(allowanceSlot, sub(allowance_, amount)) } } } /// @dev Sets `amount` as the allowance of `spender` over the tokens of `owner`. /// /// Emits a {Approval} event. function _approve(address owner, address spender, uint256 amount) internal virtual { /// @solidity memory-safe-assembly assembly { let owner_ := shl(96, owner) // Compute the allowance slot and store the amount. mstore(0x20, spender) mstore(0x0c, or(owner_, _ALLOWANCE_SLOT_SEED)) sstore(keccak256(0x0c, 0x34), amount) // Emit the {Approval} event. mstore(0x00, amount) log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, shr(96, owner_), shr(96, mload(0x2c))) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* HOOKS TO OVERRIDE */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Hook that is called before any transfer of tokens. /// This includes minting and burning. function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {} /// @dev Hook that is called after any transfer of tokens. /// This includes minting and burning. function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {} }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The operation failed, as the output exceeds the maximum value of uint256. error ExpOverflow(); /// @dev The operation failed, as the output exceeds the maximum value of uint256. error FactorialOverflow(); /// @dev The operation failed, due to an overflow. error RPowOverflow(); /// @dev The mantissa is too big to fit. error MantissaOverflow(); /// @dev The operation failed, due to an multiplication overflow. error MulWadFailed(); /// @dev The operation failed, due to an multiplication overflow. error SMulWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error DivWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error SDivWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error MulDivFailed(); /// @dev The division failed, as the denominator is zero. error DivFailed(); /// @dev The full precision multiply-divide operation failed, either due /// to the result being larger than 256 bits, or a division by a zero. error FullMulDivFailed(); /// @dev The output is undefined, as the input is less-than-or-equal to zero. error LnWadUndefined(); /// @dev The input outside the acceptable domain. error OutOfDomain(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The scalar of ETH and most ERC20s. uint256 internal constant WAD = 1e18; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* SIMPLIFIED FIXED POINT OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Equivalent to `(x * y) / WAD` rounded down. function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if mul(y, gt(x, div(not(0), y))) { mstore(0x00, 0xbac65e5b) // `MulWadFailed()`. revert(0x1c, 0x04) } z := div(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down. function sMulWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, y) // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`. if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) { mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`. revert(0x1c, 0x04) } z := sdiv(z, WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks. function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks. function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded up. function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if mul(y, gt(x, div(not(0), y))) { mstore(0x00, 0xbac65e5b) // `MulWadFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD)) } } /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks. function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD)) } } /// @dev Equivalent to `(x * WAD) / y` rounded down. function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`. if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) { mstore(0x00, 0x7c5f487d) // `DivWadFailed()`. revert(0x1c, 0x04) } z := div(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down. function sDivWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, WAD) // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`. if iszero(and(iszero(iszero(y)), eq(sdiv(z, WAD), x))) { mstore(0x00, 0x5c43740d) // `SDivWadFailed()`. revert(0x1c, 0x04) } z := sdiv(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks. function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks. function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded up. function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`. if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) { mstore(0x00, 0x7c5f487d) // `DivWadFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y)) } } /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks. function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y)) } } /// @dev Equivalent to `x` to the power of `y`. /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`. function powWad(int256 x, int256 y) internal pure returns (int256) { // Using `ln(x)` means `x` must be greater than 0. return expWad((lnWad(x) * y) / int256(WAD)); } /// @dev Returns `exp(x)`, denominated in `WAD`. /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is less than 0.5 we return zero. // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`. if (x <= -41446531673892822313) return r; /// @solidity memory-safe-assembly assembly { // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`. if iszero(slt(x, 135305999368893231589)) { mstore(0x00, 0xa37bfec9) // `ExpOverflow()`. revert(0x1c, 0x04) } } // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96` // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5 ** 18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96; x = x - k * 54916777467707473351141471128; // `k` is in the range `[-61, 195]`. // Evaluate using a (6, 7)-term rational approximation. // `p` is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave `p` in `2**192` basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; /// @solidity memory-safe-assembly assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already `2**96` too large. r := sdiv(p, q) } // r should be in the range `(0.09, 0.25) * 2**96`. // We now need to multiply r by: // - The scale factor `s ≈ 6.031367120`. // - The `2**k` factor from the range reduction. // - The `1e18 / 2**96` factor for base conversion. // We do this all at once, with an intermediate result in `2**213` // basis, so the final right shift is always by a positive amount. r = int256( (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k) ); } } /// @dev Returns `ln(x)`, denominated in `WAD`. /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln function lnWad(int256 x) internal pure returns (int256 r) { /// @solidity memory-safe-assembly assembly { // We want to convert `x` from `10**18` fixed point to `2**96` fixed point. // We do this by multiplying by `2**96 / 10**18`. But since // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here // and add `ln(2**96 / 10**18)` at the end. // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`. r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // We place the check here for more optimal stack operations. if iszero(sgt(x, 0)) { mstore(0x00, 0x1615e638) // `LnWadUndefined()`. revert(0x1c, 0x04) } // forgefmt: disable-next-item r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)), 0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff)) // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) x := shr(159, shl(r, x)) // Evaluate using a (8, 8)-term rational approximation. // `p` is made monic, we will multiply by a scale factor later. // forgefmt: disable-next-item let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir. sar(96, mul(add(43456485725739037958740375743393, sar(96, mul(add(24828157081833163892658089445524, sar(96, mul(add(3273285459638523848632254066296, x), x))), x))), x)), 11111509109440967052023855526967) p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857) p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526) p := sub(mul(p, x), shl(96, 795164235651350426258249787498)) // We leave `p` in `2**192` basis so we don't need to scale it back up for the division. // `q` is monic by convention. let q := add(5573035233440673466300451813936, x) q := add(71694874799317883764090561454958, sar(96, mul(x, q))) q := add(283447036172924575727196451306956, sar(96, mul(x, q))) q := add(401686690394027663651624208769553, sar(96, mul(x, q))) q := add(204048457590392012362485061816622, sar(96, mul(x, q))) q := add(31853899698501571402653359427138, sar(96, mul(x, q))) q := add(909429971244387300277376558375, sar(96, mul(x, q))) // `p / q` is in the range `(0, 0.125) * 2**96`. // Finalization, we need to: // - Multiply by the scale factor `s = 5.549…`. // - Add `ln(2**96 / 10**18)`. // - Add `k * ln(2)`. // - Multiply by `10**18 / 2**96 = 5**18 >> 78`. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already `2**96` too large. p := sdiv(p, q) // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`. p := mul(1677202110996718588342820967067443963516166, p) // Add `ln(2) * k * 5**18 * 2**192`. // forgefmt: disable-next-item p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p) // Add `ln(2**96 / 10**18) * 5**18 * 2**192`. p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p) // Base conversion: mul `2**18 / 2**192`. r := sar(174, p) } } /// @dev Returns `W_0(x)`, denominated in `WAD`. /// See: https://en.wikipedia.org/wiki/Lambert_W_function /// a.k.a. Product log function. This is an approximation of the principal branch. function lambertW0Wad(int256 x) internal pure returns (int256 w) { // forgefmt: disable-next-item unchecked { if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`. int256 wad = int256(WAD); int256 p = x; uint256 c; // Whether we need to avoid catastrophic cancellation. uint256 i = 4; // Number of iterations. if (w <= 0x1ffffffffffff) { if (-0x4000000000000 <= w) { i = 1; // Inputs near zero only take one step to converge. } else if (w <= -0x3ffffffffffffff) { i = 32; // Inputs near `-1/e` take very long to converge. } } else if (w >> 63 == 0) { /// @solidity memory-safe-assembly assembly { // Inline log2 for more performance, since the range is small. let v := shr(49, w) let l := shl(3, lt(0xff, v)) l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)), 0x0706060506020504060203020504030106050205030304010505030400000000)), 49) w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13)) c := gt(l, 60) i := add(2, add(gt(l, 53), c)) } } else { int256 ll = lnWad(w = lnWad(w)); /// @solidity memory-safe-assembly assembly { // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`. w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll)) i := add(3, iszero(shr(68, x))) c := iszero(shr(143, x)) } if (c == 0) { do { // If `x` is big, use Newton's so that intermediate values won't overflow. int256 e = expWad(w); /// @solidity memory-safe-assembly assembly { let t := mul(w, div(e, wad)) w := sub(w, sdiv(sub(t, x), div(add(e, t), wad))) } if (p <= w) break; p = w; } while (--i != 0); /// @solidity memory-safe-assembly assembly { w := sub(w, sgt(w, 2)) } return w; } } do { // Otherwise, use Halley's for faster convergence. int256 e = expWad(w); /// @solidity memory-safe-assembly assembly { let t := add(w, wad) let s := sub(mul(w, e), mul(x, wad)) w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t))))) } if (p <= w) break; p = w; } while (--i != c); /// @solidity memory-safe-assembly assembly { w := sub(w, sgt(w, 2)) } // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation. if (c != 0) { int256 t = w | 1; /// @solidity memory-safe-assembly assembly { x := sdiv(mul(x, wad), t) } x = (t * (wad + lnWad(x))); /// @solidity memory-safe-assembly assembly { w := sdiv(x, add(wad, t)) } } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* GENERAL NUMBER UTILITIES */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Calculates `floor(x * y / d)` with full precision. /// Throws if result overflows a uint256 or when `d` is zero. /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for {} 1 {} { // 512-bit multiply `[p1 p0] = x * y`. // Compute the product mod `2**256` and mod `2**256 - 1` // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that `product = p1 * 2**256 + p0`. // Least significant 256 bits of the product. result := mul(x, y) // Temporarily use `result` as `p0` to save gas. let mm := mulmod(x, y, not(0)) // Most significant 256 bits of the product. let p1 := sub(mm, add(result, lt(mm, result))) // Handle non-overflow cases, 256 by 256 division. if iszero(p1) { if iszero(d) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } result := div(result, d) break } // Make sure the result is less than `2**256`. Also prevents `d == 0`. if iszero(gt(d, p1)) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } /*------------------- 512 by 256 division --------------------*/ // Make division exact by subtracting the remainder from `[p1 p0]`. // Compute remainder using mulmod. let r := mulmod(x, y, d) // `t` is the least significant bit of `d`. // Always greater or equal to 1. let t := and(d, sub(0, d)) // Divide `d` by `t`, which is a power of two. d := div(d, t) // Invert `d mod 2**256` // Now that `d` is an odd number, it has an inverse // modulo `2**256` such that `d * inv = 1 mod 2**256`. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, `d * inv = 1 mod 2**4`. let inv := xor(2, mul(3, d)) // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128 result := mul( // Divide [p1 p0] by the factors of two. // Shift in bits from `p1` into `p0`. For this we need // to flip `t` such that it is `2**256 / t`. or( mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)), div(sub(result, r), t) ), // inverse mod 2**256 mul(inv, sub(2, mul(d, inv))) ) break } } } /// @dev Calculates `floor(x * y / d)` with full precision, rounded up. /// Throws if result overflows a uint256 or when `d` is zero. /// Credit to Uniswap-v3-core under MIT license: /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) { result = fullMulDiv(x, y, d); /// @solidity memory-safe-assembly assembly { if mulmod(x, y, d) { result := add(result, 1) if iszero(result) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } } } } /// @dev Returns `floor(x * y / d)`. /// Reverts if `x * y` overflows, or `d` is zero. function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(d != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(d, iszero(mul(y, gt(x, div(not(0), y)))))) { mstore(0x00, 0xad251c27) // `MulDivFailed()`. revert(0x1c, 0x04) } z := div(mul(x, y), d) } } /// @dev Returns `ceil(x * y / d)`. /// Reverts if `x * y` overflows, or `d` is zero. function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(d != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(d, iszero(mul(y, gt(x, div(not(0), y)))))) { mstore(0x00, 0xad251c27) // `MulDivFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, y), d))), div(mul(x, y), d)) } } /// @dev Returns `ceil(x / d)`. /// Reverts if `d` is zero. function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { if iszero(d) { mstore(0x00, 0x65244e4e) // `DivFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(x, d))), div(x, d)) } } /// @dev Returns `max(0, x - y)`. function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(gt(x, y), sub(x, y)) } } /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`. /// Reverts if the computation overflows. function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`. if x { z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x` let half := shr(1, b) // Divide `b` by 2. // Divide `y` by 2 every iteration. for { y := shr(1, y) } y { y := shr(1, y) } { let xx := mul(x, x) // Store x squared. let xxRound := add(xx, half) // Round to the nearest number. // Revert if `xx + half` overflowed, or if `x ** 2` overflows. if or(lt(xxRound, xx), shr(128, x)) { mstore(0x00, 0x49f7642b) // `RPowOverflow()`. revert(0x1c, 0x04) } x := div(xxRound, b) // Set `x` to scaled `xxRound`. // If `y` is odd: if and(y, 1) { let zx := mul(z, x) // Compute `z * x`. let zxRound := add(zx, half) // Round to the nearest number. // If `z * x` overflowed or `zx + half` overflowed: if or(xor(div(zx, x), z), lt(zxRound, zx)) { // Revert if `x` is non-zero. if iszero(iszero(x)) { mstore(0x00, 0x49f7642b) // `RPowOverflow()`. revert(0x1c, 0x04) } } z := div(zxRound, b) // Return properly scaled `zxRound`. } } } } } /// @dev Returns the square root of `x`. function sqrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // Let `y = x / 2**r`. We check `y >= 2**(k + 8)` // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`. let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffffff, shr(r, x)))) z := shl(shr(1, r), z) // Goal was to get `z*z*y` within a small factor of `x`. More iterations could // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`. // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small. // That's not possible if `x < 256` but we can just verify those cases exhaustively. // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`. // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`. // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps. // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)` // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`, // with largest error when `s = 1` and when `s = 256` or `1/256`. // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`. // Then we can estimate `sqrt(y)` using // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`. // There is no overflow risk here since `y < 2**136` after the first branch above. z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If `x+1` is a perfect square, the Babylonian method cycles between // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division z := sub(z, lt(div(x, z), z)) } } /// @dev Returns the cube root of `x`. /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license: /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy function cbrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3))) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := sub(z, lt(div(x, mul(z, z)), z)) } } /// @dev Returns the square root of `x`, denominated in `WAD`. function sqrtWad(uint256 x) internal pure returns (uint256 z) { unchecked { z = 10 ** 9; if (x <= type(uint256).max / 10 ** 36 - 1) { x *= 10 ** 18; z = 1; } z *= sqrt(x); } } /// @dev Returns the cube root of `x`, denominated in `WAD`. function cbrtWad(uint256 x) internal pure returns (uint256 z) { unchecked { z = 10 ** 12; if (x <= (type(uint256).max / 10 ** 36) * 10 ** 18 - 1) { if (x >= type(uint256).max / 10 ** 36) { x *= 10 ** 18; z = 10 ** 6; } else { x *= 10 ** 36; z = 1; } } z *= cbrt(x); } } /// @dev Returns the factorial of `x`. function factorial(uint256 x) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { if iszero(lt(x, 58)) { mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`. revert(0x1c, 0x04) } for { result := 1 } x { x := sub(x, 1) } { result := mul(result, x) } } } /// @dev Returns the log2 of `x`. /// Equivalent to computing the index of the most significant bit (MSB) of `x`. /// Returns 0 if `x` is zero. function log2(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // forgefmt: disable-next-item r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)), 0x0706060506020504060203020504030106050205030304010505030400000000)) } } /// @dev Returns the log2 of `x`, rounded up. /// Returns 0 if `x` is zero. function log2Up(uint256 x) internal pure returns (uint256 r) { r = log2(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(shl(r, 1), x)) } } /// @dev Returns the log10 of `x`. /// Returns 0 if `x` is zero. function log10(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { if iszero(lt(x, 100000000000000000000000000000000000000)) { x := div(x, 100000000000000000000000000000000000000) r := 38 } if iszero(lt(x, 100000000000000000000)) { x := div(x, 100000000000000000000) r := add(r, 20) } if iszero(lt(x, 10000000000)) { x := div(x, 10000000000) r := add(r, 10) } if iszero(lt(x, 100000)) { x := div(x, 100000) r := add(r, 5) } r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999))))) } } /// @dev Returns the log10 of `x`, rounded up. /// Returns 0 if `x` is zero. function log10Up(uint256 x) internal pure returns (uint256 r) { r = log10(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(exp(10, r), x)) } } /// @dev Returns the log256 of `x`. /// Returns 0 if `x` is zero. function log256(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(shr(3, r), lt(0xff, shr(r, x))) } } /// @dev Returns the log256 of `x`, rounded up. /// Returns 0 if `x` is zero. function log256Up(uint256 x) internal pure returns (uint256 r) { r = log256(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(shl(shl(3, r), 1), x)) } } /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`. /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent). function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) { /// @solidity memory-safe-assembly assembly { mantissa := x if mantissa { if iszero(mod(mantissa, 1000000000000000000000000000000000)) { mantissa := div(mantissa, 1000000000000000000000000000000000) exponent := 33 } if iszero(mod(mantissa, 10000000000000000000)) { mantissa := div(mantissa, 10000000000000000000) exponent := add(exponent, 19) } if iszero(mod(mantissa, 1000000000000)) { mantissa := div(mantissa, 1000000000000) exponent := add(exponent, 12) } if iszero(mod(mantissa, 1000000)) { mantissa := div(mantissa, 1000000) exponent := add(exponent, 6) } if iszero(mod(mantissa, 10000)) { mantissa := div(mantissa, 10000) exponent := add(exponent, 4) } if iszero(mod(mantissa, 100)) { mantissa := div(mantissa, 100) exponent := add(exponent, 2) } if iszero(mod(mantissa, 10)) { mantissa := div(mantissa, 10) exponent := add(exponent, 1) } } } } /// @dev Convenience function for packing `x` into a smaller number using `sci`. /// The `mantissa` will be in bits [7..255] (the upper 249 bits). /// The `exponent` will be in bits [0..6] (the lower 7 bits). /// Use `SafeCastLib` to safely ensure that the `packed` number is small /// enough to fit in the desired unsigned integer type: /// ``` /// uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether)); /// ``` function packSci(uint256 x) internal pure returns (uint256 packed) { (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`. /// @solidity memory-safe-assembly assembly { if shr(249, x) { mstore(0x00, 0xce30380c) // `MantissaOverflow()`. revert(0x1c, 0x04) } packed := or(shl(7, x), packed) } } /// @dev Convenience function for unpacking a packed number from `packSci`. function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) { unchecked { unpacked = (packed >> 7) * 10 ** (packed & 0x7f); } } /// @dev Returns the average of `x` and `y`. function avg(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = (x & y) + ((x ^ y) >> 1); } } /// @dev Returns the average of `x` and `y`. function avg(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = (x >> 1) + (y >> 1) + (x & y & 1); } } /// @dev Returns the absolute value of `x`. function abs(int256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(sub(0, shr(255, x)), add(sub(0, shr(255, x)), x)) } } /// @dev Returns the absolute distance between `x` and `y`. function dist(int256 x, int256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(mul(xor(sub(y, x), sub(x, y)), sgt(x, y)), sub(y, x)) } } /// @dev Returns the minimum of `x` and `y`. function min(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), lt(y, x))) } } /// @dev Returns the minimum of `x` and `y`. function min(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), slt(y, x))) } } /// @dev Returns the maximum of `x` and `y`. function max(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), gt(y, x))) } } /// @dev Returns the maximum of `x` and `y`. function max(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), sgt(y, x))) } } /// @dev Returns `x`, bounded to `minValue` and `maxValue`. function clamp(uint256 x, uint256 minValue, uint256 maxValue) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, minValue), gt(minValue, x))) z := xor(z, mul(xor(z, maxValue), lt(maxValue, z))) } } /// @dev Returns `x`, bounded to `minValue` and `maxValue`. function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, minValue), sgt(minValue, x))) z := xor(z, mul(xor(z, maxValue), slt(maxValue, z))) } } /// @dev Returns greatest common divisor of `x` and `y`. function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { for { z := x } y {} { let t := y y := mod(z, y) z := t } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RAW NUMBER OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns `x + y`, without checking for overflow. function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x + y; } } /// @dev Returns `x + y`, without checking for overflow. function rawAdd(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x + y; } } /// @dev Returns `x - y`, without checking for underflow. function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x - y; } } /// @dev Returns `x - y`, without checking for underflow. function rawSub(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x - y; } } /// @dev Returns `x * y`, without checking for overflow. function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x * y; } } /// @dev Returns `x * y`, without checking for overflow. function rawMul(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x * y; } } /// @dev Returns `x / y`, returning 0 if `y` is zero. function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(x, y) } } /// @dev Returns `x / y`, returning 0 if `y` is zero. function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(x, y) } } /// @dev Returns `x % y`, returning 0 if `y` is zero. function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mod(x, y) } } /// @dev Returns `x % y`, returning 0 if `y` is zero. function rawSMod(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := smod(x, y) } } /// @dev Returns `(x + y) % d`, return 0 if `d` if zero. function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := addmod(x, y, d) } } /// @dev Returns `(x * y) % d`, return 0 if `d` if zero. function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mulmod(x, y, d) } } }
{ "evmVersion": "paris", "libraries": {}, "metadata": { "bytecodeHash": "ipfs", "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 50 }, "remappings": [], "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"protocolGovernor_","type":"address"},{"components":[{"internalType":"address","name":"interestRateStrategy","type":"address"},{"internalType":"address","name":"blastPointsOperator","type":"address"},{"internalType":"uint256","name":"minimumOpenBorrow","type":"uint256"},{"internalType":"bool","name":"isAutoCompounding","type":"bool"}],"internalType":"struct JuiceLendingPool.InitParams","name":"params","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"ContractDoesNotExist","type":"error"},{"inputs":[],"name":"DepositCapExceeded","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"InsufficientFlashLoanFeeAmount","type":"error"},{"inputs":[],"name":"InsufficientLiquidity","type":"error"},{"inputs":[],"name":"InvalidFlashLoanAsset","type":"error"},{"inputs":[],"name":"InvalidFlashLoanBalance","type":"error"},{"inputs":[],"name":"InvalidFlashLoanRecipientReturn","type":"error"},{"inputs":[],"name":"InvalidMinimumOpenBorrow","type":"error"},{"inputs":[],"name":"InvalidParams","type":"error"},{"inputs":[],"name":"InvalidPostFlashLoanBalance","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"name":"PRBMath_MulDiv18_Overflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath_MulDiv_Overflow","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Exp2_InputTooBig","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Exp_InputTooBig","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"string","name":"role","type":"string"}],"name":"UnauthorizedRole","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"borrower","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Borrow","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"UD60x18","name":"index","type":"uint256"}],"name":"BorrowIndexUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"UD60x18","name":"rate","type":"uint256"}],"name":"BorrowRateUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"lender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newDepositCap","type":"uint256"}],"name":"DepositCapUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"initiator","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"fee","type":"uint256"}],"name":"FlashLoan","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"gasClaimed","type":"uint256"}],"name":"GasRefundClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newStrategy","type":"address"}],"name":"InterestRateStrategyUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"UD60x18","name":"index","type":"uint256"}],"name":"LiquidityIndexUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"UD60x18","name":"rate","type":"uint256"}],"name":"LiquidityRateUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newMinimumBorrow","type":"uint256"}],"name":"MinimumBorrowUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"}],"name":"PointsOperatorConfigured","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"borrower","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Repay","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"lender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"MINIMUM_COMPOUND_AMOUNT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"accrueInterest","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"lender","type":"address"}],"name":"allowedLenders","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"onBehalfOf","type":"address"}],"name":"borrow","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimMaxGas","outputs":[{"internalType":"uint256","name":"gasClaimed","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"compound","outputs":[{"internalType":"uint256","name":"earned","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"debtToken","outputs":[{"internalType":"contract OmegaDebtToken","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"depositCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"receiverAddress","type":"address"},{"internalType":"address","name":"asset","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"flashLoanSimple","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getAsset","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getBorrowRate","outputs":[{"internalType":"UD60x18","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"borrower","type":"address"}],"name":"getDebtAmount","outputs":[{"internalType":"uint256","name":"debt","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"lender","type":"address"}],"name":"getDepositAmount","outputs":[{"internalType":"uint256","name":"balance","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLiquidityRate","outputs":[{"internalType":"UD60x18","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMinimumOpenBorrow","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getNormalizedDebt","outputs":[{"internalType":"UD60x18","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getNormalizedIncome","outputs":[{"internalType":"UD60x18","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getProtocolGovernor","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalBorrow","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isAutoCompounding","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"liquidityToken","outputs":[{"internalType":"contract OmegaLiquidityToken","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"onBehalfOf","type":"address"}],"name":"repay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"onBehalfOf","type":"address"},{"internalType":"address","name":"from","type":"address"}],"name":"repay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"reserve","outputs":[{"internalType":"contract IERC20","name":"asset","type":"address"},{"internalType":"uint256","name":"assetBalance","type":"uint256"},{"internalType":"UD60x18","name":"borrowRate","type":"uint256"},{"internalType":"UD60x18","name":"liquidityRate","type":"uint256"},{"internalType":"UD60x18","name":"liquidityIndex","type":"uint256"},{"internalType":"UD60x18","name":"borrowIndex","type":"uint256"},{"internalType":"uint256","name":"lastUpdateTimestamp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"sendYield","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newDepositCap","type":"uint256"}],"name":"setDepositCap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newStrategy","type":"address"}],"name":"setInterestRateStrategy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"minimumOpenBorrow","type":"uint256"}],"name":"setMinimumOpenBorrow","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"strategy","outputs":[{"internalType":"contract IInterestRateStrategy","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"toggleAutoCompounding","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"lender","type":"address"},{"internalType":"bool","name":"status","type":"bool"}],"name":"updateLenderStatus","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60e0604052620f42406010553480156200001857600080fd5b5060405162006284380380620062848339810160408190526200003b916200079a565b60208082015160408051808201825284516001600160a01b03908116825291850151938101939093526000805460ff191690558416608052600180558391829081908190620000896200064b565b6001600160a01b038116620000b15760405163d92e233d60e01b815260040160405180910390fd5b81516001600160a01b038116620000db5760405163d92e233d60e01b815260040160405180910390fd5b620000e56200070b565b6001600160a01b0381166200010d5760405163d92e233d60e01b815260040160405180910390fd5b6040518060e00160405280620001286200064b60201b60201c565b6001600160a01b0390811682526000602080840182905260408085018390526060808601849052670de0b6b3a7640000608080880182905260a0808901929092524260c0988901528851600380546001600160a01b0319169190981690811790975588850151600490815589850151600555928901516006558801516007558701516008559590940151600955835163313ce56760e01b815293519194929363313ce5679381810193918290030181865afa158015620001ec573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906200021291906200084f565b90506200022181600a62000990565b600b5560405130908290620002369062000750565b6001600160a01b03909216825260ff166020820152604001604051809103906000f0801580156200026b573d6000803e3d6000fd5b506001600160a01b031660a052604051309082906200028a906200075e565b6001600160a01b03909216825260ff166020820152604001604051809103906000f080158015620002bf573d6000803e3d6000fd5b506001600160a01b0390811660c0528551600280546001600160a01b031916918316919091179055602090950151600c555050600019600a55508392505081166200031d5760405163d92e233d60e01b815260040160405180910390fd5b6001600160a01b0381163b6200034657604051630b0f2dd560e31b815260040160405180910390fd5b50600d80546001600160a01b039283166001600160a01b031991821617909155600e805492841692909116821790556040516000919063c824e15790620003a99060200160208082526005908201526410931054d560da1b604082015260600190565b604051602081830303815290604052805190602001206040518263ffffffff1660e01b8152600401620003de91815260200190565b602060405180830381865afa158015620003fc573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620004229190620009a1565b9050806001600160a01b0316634e606c476040518163ffffffff1660e01b8152600401600060405180830381600087803b1580156200046057600080fd5b505af115801562000475573d6000803e3d6000fd5b5050600f80546001600160a01b0388166001600160a01b031990911681179091556040516000955090935063c824e1579250620004d691506020016020808252600c908201526b424c4153545f504f494e545360a01b604082015260600190565b604051602081830303815290604052805190602001206040518263ffffffff1660e01b81526004016200050b91815260200190565b602060405180830381865afa15801562000529573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906200054f9190620009a1565b6040516336b91f2b60e01b81526001600160a01b038481166004830152919250908216906336b91f2b90602401600060405180830381600087803b1580156200059757600080fd5b505af1158015620005ac573d6000803e3d6000fd5b5050505060608401516011805460ff19169115159190911790555050600354604051631a33757d60e01b81526001600160a01b039091169150631a33757d90620005fc90600290600401620009bf565b6020604051808303816000875af11580156200061c573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620006429190620009e8565b50505062000a02565b60006080516001600160a01b031663c824e1576040516020016200068d906020808252600a90820152691311539117d054d4d15560b21b604082015260600190565b604051602081830303815290604052805190602001206040518263ffffffff1660e01b8152600401620006c291815260200190565b602060405180830381865afa158015620006e0573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620007069190620009a1565b905090565b60006080516001600160a01b03166321f8a7216040516020016200068d906020808252600d908201526c2322a2afa1a7a62622a1aa27a960991b604082015260600190565b611080806200417783390190565b61108d80620051f783390190565b80516001600160a01b03811681146200078457600080fd5b919050565b805180151581146200078457600080fd5b60008082840360a0811215620007af57600080fd5b620007ba846200076c565b92506080601f1982011215620007cf57600080fd5b50604051608081016001600160401b03811182821017156200080157634e487b7160e01b600052604160045260246000fd5b60405262000812602085016200076c565b815262000822604085016200076c565b6020820152606084015160408201526200083f6080850162000789565b6060820152809150509250929050565b6000602082840312156200086257600080fd5b815160ff811681146200087457600080fd5b9392505050565b634e487b7160e01b600052601160045260246000fd5b600181815b80851115620008d2578160001904821115620008b657620008b66200087b565b80851615620008c457918102915b93841c939080029062000896565b509250929050565b600082620008eb575060016200098a565b81620008fa575060006200098a565b81600181146200091357600281146200091e576200093e565b60019150506200098a565b60ff8411156200093257620009326200087b565b50506001821b6200098a565b5060208310610133831016604e8410600b841016171562000963575081810a6200098a565b6200096f838362000891565b80600019048211156200098657620009866200087b565b0290505b92915050565b60006200087460ff841683620008da565b600060208284031215620009b457600080fd5b62000874826200076c565b6020810160038310620009e257634e487b7160e01b600052602160045260246000fd5b91905290565b600060208284031215620009fb57600080fd5b5051919050565b60805160a05160c0516136a462000ad360003960008181610260015281816106a401528181610774015281816115c60152818161169d015281816116e501528181611c650152611d9f01526000818161049f01528181610ac901528181610e050152818161185b01528181611cf101528181612037015281816120f301526121a5015260008181610319015281816108720152818161092601528181610ea40152818161148101528181611783015281816118fe0152818161229f01528181612377015261264b01526136a46000f3fe608060405234801561001057600080fd5b50600436106101e75760003560e01c8063a6afed9511610110578063c883b2e5116100a8578063c883b2e5146103dc578063cbd00152146103ef578063cd3293de146103f7578063d8cab31814610461578063dbd5edc71461046e578063df6ce56014610477578063e37f8a7e1461048a578063f69e204614610492578063f8d898981461049a578063fd5668bf146104c157600080fd5b8063a6afed9514610350578063a8c62e7614610358578063acb708151461036b578063b2b8c93f1461037e578063b36d5e8b14610386578063b6b55f25146103a6578063b8ba16fd146103b9578063ba1c5e80146103cc578063c4e41b22146103d457600080fd5b80635c222bad116101835780635c222bad146102c75780635c975abb146102d85780636856728e146102e35780636a11d0b2146102eb5780638456cb59146102f457806386651203146102fc578063883c6b241461030f57806389dbb85714610317578063a612ce2b1461033d57600080fd5b80630ab30d8a146101ec5780632a5ad159146102075780632e1a7d4d1461021c578063366d8f3d1461022f5780633f4ba83a1461025357806343cd8f7e1461025b5780634b3fd1481461028f57806356d9e9a8146102a257806357bb1a62146102b5575b600080fd5b6101f46104c9565b6040519081526020015b60405180910390f35b61021a6102153660046130fa565b6104ff565b005b6101f461022a366004613117565b610684565b61024361023d3660046130fa565b50600090565b60405190151581526020016101fe565b61021a610851565b6102827f000000000000000000000000000000000000000000000000000000000000000081565b6040516101fe9190613130565b6101f461029d366004613144565b61086e565b61021a6102b0366004613117565b610bd5565b61021a6102c3366004613182565b5050565b6003546001600160a01b0316610282565b60005460ff16610243565b61021a610c81565b6101f460105481565b61021a610ca8565b61021a61030a366004613117565b610cc3565b6101f4610d11565b7f0000000000000000000000000000000000000000000000000000000000000000610282565b6101f461034b3660046130fa565b610deb565b61021a610e7b565b600254610282906001600160a01b031681565b6101f4610379366004613144565b610e8b565b6101f4610f4a565b61039961039436600461321d565b611161565b6040516101fe919061331b565b6101f46103b4366004613117565b61147d565b6101f46103c73660046130fa565b611683565b6005546101f4565b6101f46116d2565b6101f46103ea36600461332e565b61176a565b600c546101f4565b600354600454600554600654600754600854600954610422966001600160a01b031695949392919087565b604080516001600160a01b0390981688526020880196909652948601939093526060850191909152608084015260a083015260c082015260e0016101fe565b6011546102439060ff1681565b6101f4600a5481565b61021a610485366004613117565b611830565b6101f4611848565b6101f46118b7565b6102827f000000000000000000000000000000000000000000000000000000000000000081565b6006546101f4565b6009546000904281036104de57505060085490565b6008546005546104f991906104f390846118d4565b906118e1565b91505090565b806001600160a01b0381166105275760405163d92e233d60e01b815260040160405180910390fd5b610530336118f0565b61058457335b60408051637974da6f60e01b81526001600160a01b0390921660048301526024820152600e60448201526d282927aa27a1a7a62fa0a226a4a760911b60648201526084015b60405180910390fd5b600280546001600160a01b0319166001600160a01b0384169081179091556040516390d3b37960e01b81526706f05b59d3b20000600482015260009182916390d3b379906024016040805180830381865afa1580156105e7573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061060b9190613370565b915091506106198183101590565b1561063757604051635435b28960e11b815260040160405180910390fd5b61063f61199c565b610647611a65565b7f5a0a75b7511650dda977e2523dc8c695cb60b246d3a71314fa44e029e7453928846040516106769190613130565b60405180910390a150505050565b600061068e611b98565b610696611bbc565b8161069f611be6565b6000807f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166370a08231336040518263ffffffff1660e01b81526004016106ee9190613130565b602060405180830381865afa15801561070b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061072f9190613394565b905080851061074057809250600191505b826003600101600082825461075591906133c3565b90915550506007546040516313452f7360e01b81526001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016916313452f73916107b191339188919088906000906004016133f8565b600060405180830381600087803b1580156107cb57600080fd5b505af11580156107df573d6000803e3d6000fd5b50506003546107fb92506001600160a01b031690503385611c04565b610803611c61565b61080b611a65565b60405183815233907f884edad9ce6fa2440d8a54cc123490eb96d2768479d49ff9c7366125a94243649060200160405180910390a250506001805592915050565b919050565b61085a336118f0565b6108645733610536565b61086c611e34565b565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316634295cbe76040518163ffffffff1660e01b8152600401602060405180830381865afa1580156108ce573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108f2919061342b565b1561090f5760405162461bcd60e51b815260040161057b90613448565b610917611b98565b6040516311d8765360e31b81527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031690638ec3b29890610963903390600401613130565b602060405180830381865afa158015610980573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109a4919061342b565b6109f457335b60408051637974da6f60e01b81526001600160a01b0390921660048301526024820152600f60448201526e20a1a1a7aaa72a2fa6a0a720a3a2a960891b606482015260840161057b565b6109fc611bbc565b6003546040516370a0823160e01b81526001600160a01b03909116906370a0823190610a2c903090600401613130565b602060405180830381865afa158015610a49573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a6d9190613394565b831115610a8d5760405163bb55fd2760e01b815260040160405180910390fd5b610a95611be6565b8260036001016000828254610aaa91906133c3565b9091555050600854604051630d6b960560e41b81526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000169163d6b9605091610b04918691889190600090600401613475565b600060405180830381600087803b158015610b1e57600080fd5b505af1158015610b32573d6000803e3d6000fd5b5050600354610b4e92506001600160a01b031690508385611c04565b610b56611c61565b610b5e611a65565b600c54831015610b815760405163024f8afb60e51b815260040160405180910390fd5b816001600160a01b03167fcbc04eca7e9da35cb1393a6135a199ca52e450d5e9251cbd99f7847d33a3675084604051610bbc91815260200190565b60405180910390a25081610bcf60018055565b92915050565b610c5c33604051602001610c0e906020808252601190820152702622a7222faca4a2a6222fa9a2a72222a960791b604082015260600190565b60408051601f19818403018152828252805160209182012083830190925260118352702622a7222faca4a2a6222fa9a2a72222a960791b90830152600d546001600160a01b03169291611e80565b600454600354610c77906001600160a01b0316333085611f18565b6102c38183611f51565b610c8a336118f0565b610c945733610536565b6011805460ff19811660ff90911615179055565b610cb1336118f0565b610cbb5733610536565b61086c611fbc565b610ccc336118f0565b610cd65733610536565b600a8190556040518181527f333b26cca69716ad4680ddb07663f5bfb4f06045671f336af9a83690a3ae00f99060200160405180910390a150565b600954600090428103610d2657505060075490565b60035460405163e12f3a6160e01b81526000916001600160a01b03169063e12f3a6190610d57903090600401613130565b602060405180830381865afa158015610d74573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d989190613394565b90506000610dc6610dab60036001015490565b600454610dc090610dbd9086906134a9565b90565b90611ff9565b9050610de3816104f36003600401546104f36003800154886118d4565b935050505090565b6040516370a0823160e01b81526000906001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016906370a0823190610e3a908590600401613130565b602060405180830381865afa158015610e57573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610bcf9190613394565b610e8361199c565b61086c611a65565b6000610e95611b98565b6040516311d8765360e31b81527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031690638ec3b29890610ee1903390600401613130565b602060405180830381865afa158015610efe573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610f22919061342b565b610f2c57336109aa565b610f34611bbc565b610f3f838384612011565b9050610bcf60018055565b600e5460405160009182916001600160a01b039091169063c824e15790610f8d9060200160208082526005908201526410931054d560da1b604082015260600190565b604051602081830303815290604052805190602001206040518263ffffffff1660e01b8152600401610fc191815260200190565b602060405180830381865afa158015610fde573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061100291906134bc565b600e546040519192506000916001600160a01b03909116906321f8a7219061102c906020016134d9565b604051602081830303815290604052805190602001206040518263ffffffff1660e01b815260040161106091815260200190565b602060405180830381865afa15801561107d573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906110a191906134bc565b60405163662aa11d60e01b81523060048201526001600160a01b0380831660248301529192509083169063662aa11d906044016020604051808303816000875af11580156110f3573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906111179190613394565b9250806001600160a01b03167f9c3c39d0eedd3d18612a0e8e76cc7bc873815d3e19206dbbf9825989b1c95e6b8460405161115491815260200190565b60405180910390a2505090565b6060846001600160a01b03811661118b5760405163d92e233d60e01b815260040160405180910390fd5b611193611b98565b61119b611bbc565b6003546001600160a01b038681169116146111c957604051633c4edfcd60e21b815260040160405180910390fd5b6003546040516370a0823160e01b81526000916001600160a01b0316906370a08231906111fa903090600401613130565b602060405180830381865afa158015611217573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061123b9190613394565b90506000611253610dbd61124d61229b565b886104f3565b90508186111561127657604051633ee39f9d60e01b815260040160405180910390fd5b60035461128d906001600160a01b03168988611c04565b60035460405163feea07eb60e01b815260009182916001600160a01b03808d169263feea07eb926112ca92339216908d9089908e90600401613500565b6000604051808303816000875af11580156112e9573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611311919081019061353a565b91509150816113335760405163a155965d60e01b815260040160405180910390fd5b6003546040516370a0823160e01b81526000916001600160a01b0316906370a0823190611364903090600401613130565b602060405180830381865afa158015611381573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906113a59190613394565b9050808511156113c8576040516323c758a760e11b815260040160405180910390fd5b60006113d486836133c3565b9050808511156113f757604051636174404560e01b815260040160405180910390fd5b801561141b5761141b611408612373565b6003546001600160a01b03169083611c04565b600354604080518c8152602081018490526001600160a01b03909216917f31aaad38f00845a242d16ae90d7bd72fc68f0e22581470f9dc0de241210c2886910160405180910390a2509095505050505061147460018055565b50949350505050565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316634295cbe76040518163ffffffff1660e01b8152600401602060405180830381865afa1580156114dd573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611501919061342b565b1561151e5760405162461bcd60e51b815260040161057b90613448565b611526611b98565b61152e611bbc565b600019600a54141580156115545750600a546115486116d2565b61155290846134a9565b115b15611572576040516324d758c360e21b815260040160405180910390fd5b61157a611be6565b816003600101600082825461158f91906134a9565b90915550506003546115ac906001600160a01b0316333085611f18565b600754604051630d6b960560e41b81526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000169163d6b9605091611601913391879190600190600401613475565b600060405180830381600087803b15801561161b57600080fd5b505af115801561162f573d6000803e3d6000fd5b5050505061163b611c61565b611643611a65565b60405182815233907fe1fffcc4923d04b559f4d29a8bfc6cda04eb5b0d3c460751c2402c5c5cc9109c9060200160405180910390a2508061084c60018055565b6040516370a0823160e01b81526000906001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016906370a0823190610e3a908590600401613130565b6000611765610dbd6003600401546104f37f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663b1bf962d6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611741573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610dbd9190613394565b905090565b6000611774611b98565b6040516311d8765360e31b81527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031690638ec3b298906117c0903390600401613130565b602060405180830381865afa1580156117dd573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611801919061342b565b61180b57336109aa565b611813611bbc565b61181e848484612011565b905061182960018055565b9392505050565b611839336118f0565b6118435733610536565b600c55565b6000611765610dbd6003600501546104f37f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663b1bf962d6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611741573d6000803e3d6000fd5b60006118c1611bbc565b6118c9612428565b9050610dbd60018055565b600061182983834261252e565b6000611829610dbd8484612591565b6000816001600160a01b03167f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663893d20e86040518163ffffffff1660e01b8152600401602060405180830381865afa15801561195a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061197e91906134bc565b6001600160a01b03161461199457506000919050565b506001919050565b60065415611a5f576006546009546000916119b6916118d4565b6007549091506119c79082906118e1565b6007556005546009546000916119dc916118d4565b6008549091506119ed9082906118e1565b6008556007546040519081527f98c7d87cc1242fd0802e2cc1c048bab3a03309350b0e8af0c06f6110b7aa16869060200160405180910390a16008546040519081527f3d78dc9bb9d0a317106d49b366e60f1b7995cfc4df04348c4ffe939f4540b5ae9060200160405180910390a150505b42600955565b6000611a6f611848565b60045490915060008215611a9657611a93611a8d610dbd85856134a9565b84610dc0565b90505b6002546040516390d3b37960e01b8152600481018390526000916001600160a01b0316906390d3b379906024016040805180830381865afa158015611adf573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611b039190613370565b6005559050611b2c611b25611b16612647565b670de0b6b3a7640000906126a7565b82906118e1565b6006556005546040519081527f578adda73f5b431118629e4fc78f890d645ad2613a5260bddc23fa48065b940a9060200160405180910390a16006546040519081527fbaa019247a3ef5fbd10fa058e87b444fe8cd8f5d48494dc3e5756e509a34134990602001610676565b60005460ff161561086c5760405163d93c066560e01b815260040160405180910390fd5b600260015403611bdf57604051633ee5aeb560e01b815260040160405180910390fd5b6002600155565b611bee61199c565b60115460ff161561086c57611c01612428565b50565b611c5c83846001600160a01b031663a9059cbb8585604051602401611c2a9291906135c6565b604051602081830303815290604052915060e01b6020820180516001600160e01b0383818316178352505050506126b6565b505050565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611cc1573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611ce59190613394565b905060006003600101547f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611d4d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d719190613394565b611d7b91906134a9565b9050818111156102c3576000611d9183836133c3565b9050600b54811115611c5c577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663d6b96050611dd4612373565b6007546040516001600160e01b031960e085901b168152611dfd92918691600190600401613475565b600060405180830381600087803b158015611e1757600080fd5b505af1158015611e2b573d6000803e3d6000fd5b50505050505050565b611e3c612710565b6000805460ff191690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b604051611e769190613130565b60405180910390a1565b604051632474521560e21b8152600481018390526001600160a01b0384811660248301528516906391d1485490604401602060405180830381865afa158015611ecd573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611ef1919061342b565b611f12578281604051637974da6f60e01b815260040161057b9291906135df565b50505050565b6040516001600160a01b038481166024830152838116604483015260648201839052611f129186918216906323b872dd90608401611c2a565b8060036001016000828254611f6691906134a9565b90915550611f80905082600754600454610dc091906104f3565b60078190556040519081527f98c7d87cc1242fd0802e2cc1c048bab3a03309350b0e8af0c06f6110b7aa16869060200160405180910390a15050565b611fc4611b98565b6000805460ff191660011790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a258611e693390565b6000611829610dbd84670de0b6b3a764000085612733565b600061201b611be6565b6040516370a0823160e01b815284906000906001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016906370a082319061206c908890600401613130565b602060405180830381865afa158015612089573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906120ad9190613394565b905060008183106120bf575090508060015b82600360010160008282546120d491906134a9565b90915550506008546040516313452f7360e01b81526001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016916313452f7391612130918a9188919087906001906004016133f8565b600060405180830381600087803b15801561214a57600080fd5b505af115801561215e573d6000803e3d6000fd5b505060035461217b92506001600160a01b03169050863086611f18565b612183611c61565b61218b611a65565b6040516370a0823160e01b81526000906001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016906370a08231906121da908a90600401613130565b602060405180830381865afa1580156121f7573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061221b9190613394565b905060008111801561222e5750600c5481105b1561224c5760405163024f8afb60e51b815260040160405180910390fd5b866001600160a01b03167f5c16de4f8b59bd9caf0f49a545f25819a895ed223294290b408242e72a5942318560405161228791815260200190565b60405180910390a250919695505050505050565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663e5f3d3a56040516020016122fe906020808252600e908201526d464c4153485f4c4f414e5f46454560901b604082015260600190565b604051602081830303815290604052805190602001206040518263ffffffff1660e01b815260040161233291815260200190565b602060405180830381865afa15801561234f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906117659190613394565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166321f8a7216040516020016123b3906134d9565b604051602081830303815290604052805190602001206040518263ffffffff1660e01b81526004016123e791815260200190565b602060405180830381865afa158015612404573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061176591906134bc565b60035460405163e12f3a6160e01b81526000916001600160a01b031690819063e12f3a619061245b903090600401613130565b602060405180830381865afa158015612478573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061249c9190613394565b9150601054821061252a5760048054604051635569f64b60e11b815290916001600160a01b0384169163aad3ec96916124d99130918891016135c6565b6020604051808303816000875af11580156124f8573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061251c9190613394565b92506125288184611f51565b505b5090565b6000670de0b6b3a76400008161254485856133c3565b90508060000361255657509050611829565b60006301e133806125678884613603565b6125719190613630565b905061258661257f82612807565b84906118e1565b979650505050505050565b60008080600019848609848602925082811083820303915050806000036125c55750670de0b6b3a764000090049050610bcf565b670de0b6b3a764000081106125f757604051635173648d60e01b8152600481018690526024810185905260440161057b565b6000670de0b6b3a764000085870962040000818503049310909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663e5f3d3a56040516020016122fe906020808252600b908201526a4c454e44494e475f46454560a81b604082015260600190565b6000611829610dbd83856133c3565b60006126cb6001600160a01b0384168361285d565b905080516000141580156126f05750808060200190518101906126ee919061342b565b155b15611c5c5782604051635274afe760e01b815260040161057b9190613130565b60005460ff1661086c57604051638dfc202b60e01b815260040160405180910390fd5b600080806000198587098587029250828110838203039150508060000361276d578382816127635761276361361a565b0492505050611829565b83811061279e57604051630c740aef60e31b815260048101879052602481018690526044810185905260640161057b565b60008486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091026000889003889004909101858311909403939093029303949094049190911702949350505050565b600081680736ea4425c11ac63081111561283757604051630d7b1d6560e11b81526004810184905260240161057b565b6714057b7ef767814f8102612855670de0b6b3a7640000820461286b565b949350505050565b6060611829838360006128c1565b600081680a688906bd8affffff81111561289b5760405163b3b6ba1f60e01b81526004810184905260240161057b565b60006128b3670de0b6b3a7640000604084901b613630565b9050612855610dbd8261295e565b6060814710156128e6573060405163cd78605960e01b815260040161057b9190613130565b600080856001600160a01b031684866040516129029190613652565b60006040518083038185875af1925050503d806000811461293f576040519150601f19603f3d011682016040523d82523d6000602084013e612944565b606091505b5091509150612954868383613069565b9695505050505050565b600160bf1b60ff60381b821615612a47576001603f1b82161561298a5768016a09e667f3bcc9090260401c5b6001603e1b8216156129a5576801306fe0a31b7152df0260401c5b6001603d1b8216156129c0576801172b83c7d517adce0260401c5b6001603c1b8216156129db5768010b5586cf9890f62a0260401c5b6001603b1b8216156129f6576801059b0d31585743ae0260401c5b6001603a1b821615612a1157680102c9a3e778060ee70260401c5b600160391b821615612a2c5768010163da9fb33356d80260401c5b600160381b821615612a4757680100b1afa5abcbed610260401c5b60ff60301b821615612b2b57600160371b821615612a6e5768010058c86da1c09ea20260401c5b600160361b821615612a89576801002c605e2e8cec500260401c5b600160351b821615612aa457680100162f3904051fa10260401c5b600160341b821615612abf576801000b175effdc76ba0260401c5b600160331b821615612ada57680100058ba01fb9f96d0260401c5b600160321b821615612af55768010002c5cc37da94920260401c5b600160311b821615612b10576801000162e525ee05470260401c5b600160301b821615612b2b5768010000b17255775c040260401c5b60ff60281b821615612c0f576001602f1b821615612b52576801000058b91b5bc9ae0260401c5b6001602e1b821615612b6d57680100002c5c89d5ec6d0260401c5b6001602d1b821615612b885768010000162e43f4f8310260401c5b6001602c1b821615612ba357680100000b1721bcfc9a0260401c5b6001602b1b821615612bbe5768010000058b90cf1e6e0260401c5b6001602a1b821615612bd9576801000002c5c863b73f0260401c5b600160291b821615612bf457680100000162e430e5a20260401c5b600160281b821615612c0f576801000000b1721835510260401c5b64ff00000000821615612cfc57648000000000821615612c3857680100000058b90c0b490260401c5b644000000000821615612c545768010000002c5c8601cc0260401c5b642000000000821615612c70576801000000162e42fff00260401c5b641000000000821615612c8c5768010000000b17217fbb0260401c5b640800000000821615612ca8576801000000058b90bfce0260401c5b640400000000821615612cc457680100000002c5c85fe30260401c5b640200000000821615612ce05768010000000162e42ff10260401c5b640100000000821615612cfc57680100000000b17217f80260401c5b63ff000000821615612de0576380000000821615612d235768010000000058b90bfc0260401c5b6340000000821615612d3e576801000000002c5c85fe0260401c5b6320000000821615612d5957680100000000162e42ff0260401c5b6310000000821615612d74576801000000000b17217f0260401c5b6308000000821615612d8f57680100000000058b90c00260401c5b6304000000821615612daa5768010000000002c5c8600260401c5b6302000000821615612dc5576801000000000162e4300260401c5b6301000000821615612de05768010000000000b172180260401c5b62ff0000821615612ebb5762800000821615612e05576801000000000058b90c0260401c5b62400000821615612e1f57680100000000002c5c860260401c5b62200000821615612e395768010000000000162e430260401c5b62100000821615612e5357680100000000000b17210260401c5b62080000821615612e6d5768010000000000058b910260401c5b62040000821615612e87576801000000000002c5c80260401c5b62020000821615612ea157680100000000000162e40260401c5b62010000821615612ebb576801000000000000b1720260401c5b61ff00821615612f8d57618000821615612ede57680100000000000058b90260401c5b614000821615612ef75768010000000000002c5d0260401c5b612000821615612f10576801000000000000162e0260401c5b611000821615612f295768010000000000000b170260401c5b610800821615612f42576801000000000000058c0260401c5b610400821615612f5b57680100000000000002c60260401c5b610200821615612f7457680100000000000001630260401c5b610100821615612f8d57680100000000000000b10260401c5b60ff821615613052576080821615612fae57680100000000000000590260401c5b6040821615612fc6576801000000000000002c0260401c5b6020821615612fde57680100000000000000160260401c5b6010821615612ff6576801000000000000000b0260401c5b600882161561300e57680100000000000000060260401c5b600482161561302657680100000000000000030260401c5b600282161561303c576001600160401b010260401c5b6001821615613052576001600160401b010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b60608261307e57613079826130bc565b611829565b815115801561309557506001600160a01b0384163b155b156130b55783604051639996b31560e01b815260040161057b9190613130565b5080611829565b8051156130cc5780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b6001600160a01b0381168114611c0157600080fd5b60006020828403121561310c57600080fd5b8135611829816130e5565b60006020828403121561312957600080fd5b5035919050565b6001600160a01b0391909116815260200190565b6000806040838503121561315757600080fd5b823591506020830135613169816130e5565b809150509250929050565b8015158114611c0157600080fd5b6000806040838503121561319557600080fd5b82356131a0816130e5565b9150602083013561316981613174565b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f191681016001600160401b03811182821017156131ee576131ee6131b0565b604052919050565b60006001600160401b0382111561320f5761320f6131b0565b50601f01601f191660200190565b6000806000806080858703121561323357600080fd5b843561323e816130e5565b9350602085013561324e816130e5565b92506040850135915060608501356001600160401b0381111561327057600080fd5b8501601f8101871361328157600080fd5b803561329461328f826131f6565b6131c6565b8181528860208385010111156132a957600080fd5b8160208401602083013760006020838301015280935050505092959194509250565b60005b838110156132e65781810151838201526020016132ce565b50506000910152565b600081518084526133078160208601602086016132cb565b601f01601f19169290920160200192915050565b60208152600061182960208301846132ef565b60008060006060848603121561334357600080fd5b833592506020840135613355816130e5565b91506040840135613365816130e5565b809150509250925092565b6000806040838503121561338357600080fd5b505080516020909101519092909150565b6000602082840312156133a657600080fd5b5051919050565b634e487b7160e01b600052601160045260246000fd5b81810381811115610bcf57610bcf6133ad565b600281106133f457634e487b7160e01b600052602160045260246000fd5b9052565b6001600160a01b03861681526020810185905260408101849052821515606082015260a0810161295460808301846133d6565b60006020828403121561343d57600080fd5b815161182981613174565b602080825260139082015272141493d513d0d3d317d11154149150d0551151606a1b604082015260600190565b6001600160a01b03851681526020810184905260408101839052608081016134a060608301846133d6565b95945050505050565b80820180821115610bcf57610bcf6133ad565b6000602082840312156134ce57600080fd5b8151611829816130e5565b6020808252600d908201526c2322a2afa1a7a62622a1aa27a960991b604082015260600190565b6001600160a01b03868116825285166020820152604081018490526060810183905260a060808201819052600090612586908301846132ef565b6000806040838503121561354d57600080fd5b825161355881613174565b60208401519092506001600160401b0381111561357457600080fd5b8301601f8101851361358557600080fd5b805161359361328f826131f6565b8181528660208385010111156135a857600080fd5b6135b98260208301602086016132cb565b8093505050509250929050565b6001600160a01b03929092168252602082015260400190565b6001600160a01b0383168152604060208201819052600090612855908301846132ef565b8082028115828204841417610bcf57610bcf6133ad565b634e487b7160e01b600052601260045260246000fd5b60008261364d57634e487b7160e01b600052601260045260246000fd5b500490565b600082516136648184602087016132cb565b919091019291505056fea26469706673582212202dc833096cc255ba12e407581c23b763105ea225c846effeea8446f0f15adbc164736f6c6343000818003360c06040523480156200001157600080fd5b50604051620010803803806200108083398101604081905262000034916200011c565b81816040518060400160405280601081526020016f27b6b2b3b0902232b13a102a37b5b2b760811b8152506040518060400160405280600381526020016213d11560ea1b8152508360006001600160a01b0316816001600160a01b031603620000b05760405163d92e233d60e01b815260040160405180910390fd5b6001600160a01b03851660805260ff841660a0526000620000d2848262000212565b506001620000e1838262000212565b50869450506001600160a01b0384169250620001139150505760405163d92e233d60e01b815260040160405180910390fd5b505050620002de565b600080604083850312156200013057600080fd5b82516001600160a01b03811681146200014857600080fd5b602084015190925060ff811681146200016057600080fd5b809150509250929050565b634e487b7160e01b600052604160045260246000fd5b600181811c908216806200019657607f821691505b602082108103620001b757634e487b7160e01b600052602260045260246000fd5b50919050565b601f8211156200020d576000816000526020600020601f850160051c81016020861015620001e85750805b601f850160051c820191505b818110156200020957828155600101620001f4565b5050505b505050565b81516001600160401b038111156200022e576200022e6200016b565b62000246816200023f845462000181565b84620001bd565b602080601f8311600181146200027e5760008415620002655750858301515b600019600386901b1c1916600185901b17855562000209565b600085815260208120601f198616915b82811015620002af578886015182559484019460019091019084016200028e565b5085821015620002ce5787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b60805160a051610d6762000319600039600061017e015260008181610347015281816103c70152818161054001526107830152610d676000f3fe608060405234801561001057600080fd5b50600436106100e05760003560e01c806370a082311161008757806370a08231146101b05780637ecebe00146101c357806395d89b41146101e9578063a9059cbb146101f1578063b1bf962d146101ff578063d505accf14610207578063d6b960501461021a578063dd62ed3e1461022d57600080fd5b806306fdde03146100e5578063095ea7b31461010357806313452f731461012657806318160ddd1461013b5780631da24f3e1461015157806323b872dd14610164578063313ce567146101775780633644e515146101a8575b600080fd5b6100ed610256565b6040516100fa9190610a83565b60405180910390f35b610116610111366004610aee565b6102e8565b60405190151581526020016100fa565b610139610134366004610b27565b61033c565b005b6101436103bd565b6040519081526020016100fa565b61014361015f366004610b85565b610460565b610116610172366004610ba0565b61047a565b60405160ff7f00000000000000000000000000000000000000000000000000000000000000001681526020016100fa565b610143610495565b6101436101be366004610b85565b610512565b6101436101d1366004610b85565b6338377508600c908152600091909152602090205490565b6100ed6105cd565b610116610172366004610aee565b6101436105dc565b610139610215366004610bdc565b6105ef565b610139610228366004610c4f565b610778565b61014361023b366004610c95565b602052637f5e9f20600c908152600091909152603490205490565b60606000805461026590610cc8565b80601f016020809104026020016040519081016040528092919081815260200182805461029190610cc8565b80156102de5780601f106102b3576101008083540402835291602001916102de565b820191906000526020600020905b8154815290600101906020018083116102c157829003601f168201915b5050505050905090565b600082602052637f5e9f20600c5233600052816034600c205581600052602c5160601c337f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560206000a35060015b92915050565b336001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614610385576040516323f09b3960e21b815260040160405180910390fd5b6000821561039d5761039686610460565b90506103ab565b6103a88585846107e1565b90505b6103b5868261081e565b505050505050565b600061045b6104527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316630ab30d8a6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610423573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104479190610d02565b6104556104526105dc565b90565b90610895565b905090565b6387a211a2600c9081526000828152602090912054610336565b600060405163a24e573d60e01b815260040160405180910390fd5b6000806104a0610256565b8051906020012090506040517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f81528160208201527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6604082015246606082015230608082015260a081209250505090565b6387a211a2600c9081526000828152602090912054806000036105385750600092915050565b6105c66104527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316630ab30d8a6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561059c573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105c09190610d02565b83610455565b9392505050565b60606001805461026590610cc8565b600061045b6805345cdf77eb68f44c5490565b60006105f9610256565b8051906020012090508442111561061857631a15a3cc6000526004601cfd5b6040518860601b60601c98508760601b60601c975065383775081901600e52886000526020600c2080547f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f83528360208401527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6604084015246606084015230608084015260a08320602e527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c983528a60208401528960408401528860608401528060808401528760a084015260c08320604e526042602c206000528660ff1660205285604052846060526020806080600060015afa8b3d51146107245763ddafbaef6000526004601cfd5b0190556303faf4f960a51b88176040526034602c2087905587897f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925602060608501a360405250506000606052505050505050565b336001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016146107c1576040516323f09b3960e21b815260040160405180910390fd5b60006107ce8484846107e1565b90506107da85826108a4565b5050505050565b600082818360018111156107f7576107f7610d1b565b1461080b576108068582610923565b610815565b6108158582610972565b95945050505050565b6387a211a2600c52816000526020600c208054808311156108475763f4d678b86000526004601cfd5b82900390556805345cdf77eb68f44c8054829003905560008181526001600160a01b0383167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602083a35050565b60006105c661045284846109c9565b6805345cdf77eb68f44c54818101818110156108c85763e5cfe9576000526004601cfd5b806805345cdf77eb68f44c5550506387a211a2600c52816000526020600c208181540181555080602052600c5160601c60007fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602080a35050565b60007812725dd1d243aba0e75fe645cc4873f9e65afe688c928e1f218311670de0b6b3a76400000215820261096057637c5f487d6000526004601cfd5b50670de0b6b3a7640000919091020490565b60007812725dd1d243aba0e75fe645cc4873f9e65afe688c928e1f218311670de0b6b3a7640000021582026109af57637c5f487d6000526004601cfd5b50670de0b6b3a76400009190910281810615159190040190565b60008080600019848609848602925082811083820303915050806000036109fd5750670de0b6b3a764000090049050610336565b670de0b6b3a76400008110610a3357604051635173648d60e01b8152600481018690526024810185905260440160405180910390fd5b6000670de0b6b3a764000085870962040000818503049310909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b60006020808352835180602085015260005b81811015610ab157858101830151858201604001528201610a95565b506000604082860101526040601f19601f8301168501019250505092915050565b80356001600160a01b0381168114610ae957600080fd5b919050565b60008060408385031215610b0157600080fd5b610b0a83610ad2565b946020939093013593505050565b803560028110610ae957600080fd5b600080600080600060a08688031215610b3f57600080fd5b610b4886610ad2565b9450602086013593506040860135925060608601358015158114610b6b57600080fd5b9150610b7960808701610b18565b90509295509295909350565b600060208284031215610b9757600080fd5b6105c682610ad2565b600080600060608486031215610bb557600080fd5b610bbe84610ad2565b9250610bcc60208501610ad2565b9150604084013590509250925092565b600080600080600080600060e0888a031215610bf757600080fd5b610c0088610ad2565b9650610c0e60208901610ad2565b95506040880135945060608801359350608088013560ff81168114610c3257600080fd5b9699959850939692959460a0840135945060c09093013592915050565b60008060008060808587031215610c6557600080fd5b610c6e85610ad2565b93506020850135925060408501359150610c8a60608601610b18565b905092959194509250565b60008060408385031215610ca857600080fd5b610cb183610ad2565b9150610cbf60208401610ad2565b90509250929050565b600181811c90821680610cdc57607f821691505b602082108103610cfc57634e487b7160e01b600052602260045260246000fd5b50919050565b600060208284031215610d1457600080fd5b5051919050565b634e487b7160e01b600052602160045260246000fdfea2646970667358221220d9f91d6d45504ab779fc5e47b113b863a8b83c6795bad125ff2d934fb5ca587a64736f6c6343000818003360c06040523480156200001157600080fd5b506040516200108d3803806200108d833981016040819052620000349162000129565b81816040518060400160405280601581526020017f4f6d656761204c697175696469747920546f6b656e00000000000000000000008152506040518060400160405280600381526020016213d31560ea1b8152508360006001600160a01b0316816001600160a01b031603620000bd5760405163d92e233d60e01b815260040160405180910390fd5b6001600160a01b03851660805260ff841660a0526000620000df84826200021f565b506001620000ee83826200021f565b50869450506001600160a01b0384169250620001209150505760405163d92e233d60e01b815260040160405180910390fd5b505050620002eb565b600080604083850312156200013d57600080fd5b82516001600160a01b03811681146200015557600080fd5b602084015190925060ff811681146200016d57600080fd5b809150509250929050565b634e487b7160e01b600052604160045260246000fd5b600181811c90821680620001a357607f821691505b602082108103620001c457634e487b7160e01b600052602260045260246000fd5b50919050565b601f8211156200021a576000816000526020600020601f850160051c81016020861015620001f55750805b601f850160051c820191505b81811015620002165782815560010162000201565b5050505b505050565b81516001600160401b038111156200023b576200023b62000178565b62000253816200024c84546200018e565b84620001ca565b602080601f8311600181146200028b5760008415620002725750858301515b600019600386901b1c1916600185901b17855562000216565b600085815260208120601f198616915b82811015620002bc578886015182559484019460019091019084016200029b565b5085821015620002db5787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b60805160a051610d6762000326600039600061017e015260008181610347015281816103c70152818161054001526107830152610d676000f3fe608060405234801561001057600080fd5b50600436106100e05760003560e01c806370a082311161008757806370a08231146101b05780637ecebe00146101c357806395d89b41146101e9578063a9059cbb146101f1578063b1bf962d146101ff578063d505accf14610207578063d6b960501461021a578063dd62ed3e1461022d57600080fd5b806306fdde03146100e5578063095ea7b31461010357806313452f731461012657806318160ddd1461013b5780631da24f3e1461015157806323b872dd14610164578063313ce567146101775780633644e515146101a8575b600080fd5b6100ed610256565b6040516100fa9190610a83565b60405180910390f35b610116610111366004610aee565b6102e8565b60405190151581526020016100fa565b610139610134366004610b27565b61033c565b005b6101436103bd565b6040519081526020016100fa565b61014361015f366004610b85565b610460565b610116610172366004610ba0565b61047a565b60405160ff7f00000000000000000000000000000000000000000000000000000000000000001681526020016100fa565b610143610495565b6101436101be366004610b85565b610512565b6101436101d1366004610b85565b6338377508600c908152600091909152602090205490565b6100ed6105cd565b610116610172366004610aee565b6101436105dc565b610139610215366004610bdc565b6105ef565b610139610228366004610c4f565b610778565b61014361023b366004610c95565b602052637f5e9f20600c908152600091909152603490205490565b60606000805461026590610cc8565b80601f016020809104026020016040519081016040528092919081815260200182805461029190610cc8565b80156102de5780601f106102b3576101008083540402835291602001916102de565b820191906000526020600020905b8154815290600101906020018083116102c157829003601f168201915b5050505050905090565b600082602052637f5e9f20600c5233600052816034600c205581600052602c5160601c337f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560206000a35060015b92915050565b336001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614610385576040516323f09b3960e21b815260040160405180910390fd5b6000821561039d5761039686610460565b90506103ab565b6103a88585846107e1565b90505b6103b5868261081e565b505050505050565b600061045b6104527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663883c6b246040518163ffffffff1660e01b8152600401602060405180830381865afa158015610423573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104479190610d02565b6104556104526105dc565b90565b90610895565b905090565b6387a211a2600c9081526000828152602090912054610336565b600060405163a24e573d60e01b815260040160405180910390fd5b6000806104a0610256565b8051906020012090506040517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f81528160208201527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6604082015246606082015230608082015260a081209250505090565b6387a211a2600c9081526000828152602090912054806000036105385750600092915050565b6105c66104527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663883c6b246040518163ffffffff1660e01b8152600401602060405180830381865afa15801561059c573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105c09190610d02565b83610455565b9392505050565b60606001805461026590610cc8565b600061045b6805345cdf77eb68f44c5490565b60006105f9610256565b8051906020012090508442111561061857631a15a3cc6000526004601cfd5b6040518860601b60601c98508760601b60601c975065383775081901600e52886000526020600c2080547f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f83528360208401527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6604084015246606084015230608084015260a08320602e527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c983528a60208401528960408401528860608401528060808401528760a084015260c08320604e526042602c206000528660ff1660205285604052846060526020806080600060015afa8b3d51146107245763ddafbaef6000526004601cfd5b0190556303faf4f960a51b88176040526034602c2087905587897f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925602060608501a360405250506000606052505050505050565b336001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016146107c1576040516323f09b3960e21b815260040160405180910390fd5b60006107ce8484846107e1565b90506107da85826108a4565b5050505050565b600082818360018111156107f7576107f7610d1b565b1461080b576108068582610923565b610815565b6108158582610972565b95945050505050565b6387a211a2600c52816000526020600c208054808311156108475763f4d678b86000526004601cfd5b82900390556805345cdf77eb68f44c8054829003905560008181526001600160a01b0383167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602083a35050565b60006105c661045284846109c9565b6805345cdf77eb68f44c54818101818110156108c85763e5cfe9576000526004601cfd5b806805345cdf77eb68f44c5550506387a211a2600c52816000526020600c208181540181555080602052600c5160601c60007fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602080a35050565b60007812725dd1d243aba0e75fe645cc4873f9e65afe688c928e1f218311670de0b6b3a76400000215820261096057637c5f487d6000526004601cfd5b50670de0b6b3a7640000919091020490565b60007812725dd1d243aba0e75fe645cc4873f9e65afe688c928e1f218311670de0b6b3a7640000021582026109af57637c5f487d6000526004601cfd5b50670de0b6b3a76400009190910281810615159190040190565b60008080600019848609848602925082811083820303915050806000036109fd5750670de0b6b3a764000090049050610336565b670de0b6b3a76400008110610a3357604051635173648d60e01b8152600481018690526024810185905260440160405180910390fd5b6000670de0b6b3a764000085870962040000818503049310909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b60006020808352835180602085015260005b81811015610ab157858101830151858201604001528201610a95565b506000604082860101526040601f19601f8301168501019250505092915050565b80356001600160a01b0381168114610ae957600080fd5b919050565b60008060408385031215610b0157600080fd5b610b0a83610ad2565b946020939093013593505050565b803560028110610ae957600080fd5b600080600080600060a08688031215610b3f57600080fd5b610b4886610ad2565b9450602086013593506040860135925060608601358015158114610b6b57600080fd5b9150610b7960808701610b18565b90509295509295909350565b600060208284031215610b9757600080fd5b6105c682610ad2565b600080600060608486031215610bb557600080fd5b610bbe84610ad2565b9250610bcc60208501610ad2565b9150604084013590509250925092565b600080600080600080600060e0888a031215610bf757600080fd5b610c0088610ad2565b9650610c0e60208901610ad2565b95506040880135945060608801359350608088013560ff81168114610c3257600080fd5b9699959850939692959460a0840135945060c09093013592915050565b60008060008060808587031215610c6557600080fd5b610c6e85610ad2565b93506020850135925060408501359150610c8a60608601610b18565b905092959194509250565b60008060408385031215610ca857600080fd5b610cb183610ad2565b9150610cbf60208401610ad2565b90509250929050565b600181811c90821680610cdc57607f821691505b602082108103610cfc57634e487b7160e01b600052602260045260246000fd5b50919050565b600060208284031215610d1457600080fd5b5051919050565b634e487b7160e01b600052602160045260246000fdfea26469706673582212202fad47811e053518890b806dde5aa6cf1a3e8359929a8d82f93ef6761940fc5764736f6c634300081800330000000000000000000000005bbc51eda8508f598e01eecd1ea129e741bcc25a00000000000000000000000046b9f9fcdc73b37ad980b71b6ca1f5cc8eff259400000000000000000000000002f6eeb4e33bba64bcbea18bd149b9031c2735f7000000000000000000000000000000000000000000000002b5e3af16b18800000000000000000000000000000000000000000000000000000000000000000001
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106101e75760003560e01c8063a6afed9511610110578063c883b2e5116100a8578063c883b2e5146103dc578063cbd00152146103ef578063cd3293de146103f7578063d8cab31814610461578063dbd5edc71461046e578063df6ce56014610477578063e37f8a7e1461048a578063f69e204614610492578063f8d898981461049a578063fd5668bf146104c157600080fd5b8063a6afed9514610350578063a8c62e7614610358578063acb708151461036b578063b2b8c93f1461037e578063b36d5e8b14610386578063b6b55f25146103a6578063b8ba16fd146103b9578063ba1c5e80146103cc578063c4e41b22146103d457600080fd5b80635c222bad116101835780635c222bad146102c75780635c975abb146102d85780636856728e146102e35780636a11d0b2146102eb5780638456cb59146102f457806386651203146102fc578063883c6b241461030f57806389dbb85714610317578063a612ce2b1461033d57600080fd5b80630ab30d8a146101ec5780632a5ad159146102075780632e1a7d4d1461021c578063366d8f3d1461022f5780633f4ba83a1461025357806343cd8f7e1461025b5780634b3fd1481461028f57806356d9e9a8146102a257806357bb1a62146102b5575b600080fd5b6101f46104c9565b6040519081526020015b60405180910390f35b61021a6102153660046130fa565b6104ff565b005b6101f461022a366004613117565b610684565b61024361023d3660046130fa565b50600090565b60405190151581526020016101fe565b61021a610851565b6102827f00000000000000000000000029c55eb48e578cc498f9ace4cbefba1b37e3374d81565b6040516101fe9190613130565b6101f461029d366004613144565b61086e565b61021a6102b0366004613117565b610bd5565b61021a6102c3366004613182565b5050565b6003546001600160a01b0316610282565b60005460ff16610243565b61021a610c81565b6101f460105481565b61021a610ca8565b61021a61030a366004613117565b610cc3565b6101f4610d11565b7f0000000000000000000000005bbc51eda8508f598e01eecd1ea129e741bcc25a610282565b6101f461034b3660046130fa565b610deb565b61021a610e7b565b600254610282906001600160a01b031681565b6101f4610379366004613144565b610e8b565b6101f4610f4a565b61039961039436600461321d565b611161565b6040516101fe919061331b565b6101f46103b4366004613117565b61147d565b6101f46103c73660046130fa565b611683565b6005546101f4565b6101f46116d2565b6101f46103ea36600461332e565b61176a565b600c546101f4565b600354600454600554600654600754600854600954610422966001600160a01b031695949392919087565b604080516001600160a01b0390981688526020880196909652948601939093526060850191909152608084015260a083015260c082015260e0016101fe565b6011546102439060ff1681565b6101f4600a5481565b61021a610485366004613117565b611830565b6101f4611848565b6101f46118b7565b6102827f00000000000000000000000004bee2b151c4e829a28f838e43722112d537c9b281565b6006546101f4565b6009546000904281036104de57505060085490565b6008546005546104f991906104f390846118d4565b906118e1565b91505090565b806001600160a01b0381166105275760405163d92e233d60e01b815260040160405180910390fd5b610530336118f0565b61058457335b60408051637974da6f60e01b81526001600160a01b0390921660048301526024820152600e60448201526d282927aa27a1a7a62fa0a226a4a760911b60648201526084015b60405180910390fd5b600280546001600160a01b0319166001600160a01b0384169081179091556040516390d3b37960e01b81526706f05b59d3b20000600482015260009182916390d3b379906024016040805180830381865afa1580156105e7573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061060b9190613370565b915091506106198183101590565b1561063757604051635435b28960e11b815260040160405180910390fd5b61063f61199c565b610647611a65565b7f5a0a75b7511650dda977e2523dc8c695cb60b246d3a71314fa44e029e7453928846040516106769190613130565b60405180910390a150505050565b600061068e611b98565b610696611bbc565b8161069f611be6565b6000807f00000000000000000000000029c55eb48e578cc498f9ace4cbefba1b37e3374d6001600160a01b03166370a08231336040518263ffffffff1660e01b81526004016106ee9190613130565b602060405180830381865afa15801561070b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061072f9190613394565b905080851061074057809250600191505b826003600101600082825461075591906133c3565b90915550506007546040516313452f7360e01b81526001600160a01b037f00000000000000000000000029c55eb48e578cc498f9ace4cbefba1b37e3374d16916313452f73916107b191339188919088906000906004016133f8565b600060405180830381600087803b1580156107cb57600080fd5b505af11580156107df573d6000803e3d6000fd5b50506003546107fb92506001600160a01b031690503385611c04565b610803611c61565b61080b611a65565b60405183815233907f884edad9ce6fa2440d8a54cc123490eb96d2768479d49ff9c7366125a94243649060200160405180910390a250506001805592915050565b919050565b61085a336118f0565b6108645733610536565b61086c611e34565b565b60007f0000000000000000000000005bbc51eda8508f598e01eecd1ea129e741bcc25a6001600160a01b0316634295cbe76040518163ffffffff1660e01b8152600401602060405180830381865afa1580156108ce573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108f2919061342b565b1561090f5760405162461bcd60e51b815260040161057b90613448565b610917611b98565b6040516311d8765360e31b81527f0000000000000000000000005bbc51eda8508f598e01eecd1ea129e741bcc25a6001600160a01b031690638ec3b29890610963903390600401613130565b602060405180830381865afa158015610980573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109a4919061342b565b6109f457335b60408051637974da6f60e01b81526001600160a01b0390921660048301526024820152600f60448201526e20a1a1a7aaa72a2fa6a0a720a3a2a960891b606482015260840161057b565b6109fc611bbc565b6003546040516370a0823160e01b81526001600160a01b03909116906370a0823190610a2c903090600401613130565b602060405180830381865afa158015610a49573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a6d9190613394565b831115610a8d5760405163bb55fd2760e01b815260040160405180910390fd5b610a95611be6565b8260036001016000828254610aaa91906133c3565b9091555050600854604051630d6b960560e41b81526001600160a01b037f00000000000000000000000004bee2b151c4e829a28f838e43722112d537c9b2169163d6b9605091610b04918691889190600090600401613475565b600060405180830381600087803b158015610b1e57600080fd5b505af1158015610b32573d6000803e3d6000fd5b5050600354610b4e92506001600160a01b031690508385611c04565b610b56611c61565b610b5e611a65565b600c54831015610b815760405163024f8afb60e51b815260040160405180910390fd5b816001600160a01b03167fcbc04eca7e9da35cb1393a6135a199ca52e450d5e9251cbd99f7847d33a3675084604051610bbc91815260200190565b60405180910390a25081610bcf60018055565b92915050565b610c5c33604051602001610c0e906020808252601190820152702622a7222faca4a2a6222fa9a2a72222a960791b604082015260600190565b60408051601f19818403018152828252805160209182012083830190925260118352702622a7222faca4a2a6222fa9a2a72222a960791b90830152600d546001600160a01b03169291611e80565b600454600354610c77906001600160a01b0316333085611f18565b6102c38183611f51565b610c8a336118f0565b610c945733610536565b6011805460ff19811660ff90911615179055565b610cb1336118f0565b610cbb5733610536565b61086c611fbc565b610ccc336118f0565b610cd65733610536565b600a8190556040518181527f333b26cca69716ad4680ddb07663f5bfb4f06045671f336af9a83690a3ae00f99060200160405180910390a150565b600954600090428103610d2657505060075490565b60035460405163e12f3a6160e01b81526000916001600160a01b03169063e12f3a6190610d57903090600401613130565b602060405180830381865afa158015610d74573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d989190613394565b90506000610dc6610dab60036001015490565b600454610dc090610dbd9086906134a9565b90565b90611ff9565b9050610de3816104f36003600401546104f36003800154886118d4565b935050505090565b6040516370a0823160e01b81526000906001600160a01b037f00000000000000000000000004bee2b151c4e829a28f838e43722112d537c9b216906370a0823190610e3a908590600401613130565b602060405180830381865afa158015610e57573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610bcf9190613394565b610e8361199c565b61086c611a65565b6000610e95611b98565b6040516311d8765360e31b81527f0000000000000000000000005bbc51eda8508f598e01eecd1ea129e741bcc25a6001600160a01b031690638ec3b29890610ee1903390600401613130565b602060405180830381865afa158015610efe573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610f22919061342b565b610f2c57336109aa565b610f34611bbc565b610f3f838384612011565b9050610bcf60018055565b600e5460405160009182916001600160a01b039091169063c824e15790610f8d9060200160208082526005908201526410931054d560da1b604082015260600190565b604051602081830303815290604052805190602001206040518263ffffffff1660e01b8152600401610fc191815260200190565b602060405180830381865afa158015610fde573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061100291906134bc565b600e546040519192506000916001600160a01b03909116906321f8a7219061102c906020016134d9565b604051602081830303815290604052805190602001206040518263ffffffff1660e01b815260040161106091815260200190565b602060405180830381865afa15801561107d573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906110a191906134bc565b60405163662aa11d60e01b81523060048201526001600160a01b0380831660248301529192509083169063662aa11d906044016020604051808303816000875af11580156110f3573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906111179190613394565b9250806001600160a01b03167f9c3c39d0eedd3d18612a0e8e76cc7bc873815d3e19206dbbf9825989b1c95e6b8460405161115491815260200190565b60405180910390a2505090565b6060846001600160a01b03811661118b5760405163d92e233d60e01b815260040160405180910390fd5b611193611b98565b61119b611bbc565b6003546001600160a01b038681169116146111c957604051633c4edfcd60e21b815260040160405180910390fd5b6003546040516370a0823160e01b81526000916001600160a01b0316906370a08231906111fa903090600401613130565b602060405180830381865afa158015611217573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061123b9190613394565b90506000611253610dbd61124d61229b565b886104f3565b90508186111561127657604051633ee39f9d60e01b815260040160405180910390fd5b60035461128d906001600160a01b03168988611c04565b60035460405163feea07eb60e01b815260009182916001600160a01b03808d169263feea07eb926112ca92339216908d9089908e90600401613500565b6000604051808303816000875af11580156112e9573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611311919081019061353a565b91509150816113335760405163a155965d60e01b815260040160405180910390fd5b6003546040516370a0823160e01b81526000916001600160a01b0316906370a0823190611364903090600401613130565b602060405180830381865afa158015611381573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906113a59190613394565b9050808511156113c8576040516323c758a760e11b815260040160405180910390fd5b60006113d486836133c3565b9050808511156113f757604051636174404560e01b815260040160405180910390fd5b801561141b5761141b611408612373565b6003546001600160a01b03169083611c04565b600354604080518c8152602081018490526001600160a01b03909216917f31aaad38f00845a242d16ae90d7bd72fc68f0e22581470f9dc0de241210c2886910160405180910390a2509095505050505061147460018055565b50949350505050565b60007f0000000000000000000000005bbc51eda8508f598e01eecd1ea129e741bcc25a6001600160a01b0316634295cbe76040518163ffffffff1660e01b8152600401602060405180830381865afa1580156114dd573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611501919061342b565b1561151e5760405162461bcd60e51b815260040161057b90613448565b611526611b98565b61152e611bbc565b600019600a54141580156115545750600a546115486116d2565b61155290846134a9565b115b15611572576040516324d758c360e21b815260040160405180910390fd5b61157a611be6565b816003600101600082825461158f91906134a9565b90915550506003546115ac906001600160a01b0316333085611f18565b600754604051630d6b960560e41b81526001600160a01b037f00000000000000000000000029c55eb48e578cc498f9ace4cbefba1b37e3374d169163d6b9605091611601913391879190600190600401613475565b600060405180830381600087803b15801561161b57600080fd5b505af115801561162f573d6000803e3d6000fd5b5050505061163b611c61565b611643611a65565b60405182815233907fe1fffcc4923d04b559f4d29a8bfc6cda04eb5b0d3c460751c2402c5c5cc9109c9060200160405180910390a2508061084c60018055565b6040516370a0823160e01b81526000906001600160a01b037f00000000000000000000000029c55eb48e578cc498f9ace4cbefba1b37e3374d16906370a0823190610e3a908590600401613130565b6000611765610dbd6003600401546104f37f00000000000000000000000029c55eb48e578cc498f9ace4cbefba1b37e3374d6001600160a01b031663b1bf962d6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611741573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610dbd9190613394565b905090565b6000611774611b98565b6040516311d8765360e31b81527f0000000000000000000000005bbc51eda8508f598e01eecd1ea129e741bcc25a6001600160a01b031690638ec3b298906117c0903390600401613130565b602060405180830381865afa1580156117dd573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611801919061342b565b61180b57336109aa565b611813611bbc565b61181e848484612011565b905061182960018055565b9392505050565b611839336118f0565b6118435733610536565b600c55565b6000611765610dbd6003600501546104f37f00000000000000000000000004bee2b151c4e829a28f838e43722112d537c9b26001600160a01b031663b1bf962d6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611741573d6000803e3d6000fd5b60006118c1611bbc565b6118c9612428565b9050610dbd60018055565b600061182983834261252e565b6000611829610dbd8484612591565b6000816001600160a01b03167f0000000000000000000000005bbc51eda8508f598e01eecd1ea129e741bcc25a6001600160a01b031663893d20e86040518163ffffffff1660e01b8152600401602060405180830381865afa15801561195a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061197e91906134bc565b6001600160a01b03161461199457506000919050565b506001919050565b60065415611a5f576006546009546000916119b6916118d4565b6007549091506119c79082906118e1565b6007556005546009546000916119dc916118d4565b6008549091506119ed9082906118e1565b6008556007546040519081527f98c7d87cc1242fd0802e2cc1c048bab3a03309350b0e8af0c06f6110b7aa16869060200160405180910390a16008546040519081527f3d78dc9bb9d0a317106d49b366e60f1b7995cfc4df04348c4ffe939f4540b5ae9060200160405180910390a150505b42600955565b6000611a6f611848565b60045490915060008215611a9657611a93611a8d610dbd85856134a9565b84610dc0565b90505b6002546040516390d3b37960e01b8152600481018390526000916001600160a01b0316906390d3b379906024016040805180830381865afa158015611adf573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611b039190613370565b6005559050611b2c611b25611b16612647565b670de0b6b3a7640000906126a7565b82906118e1565b6006556005546040519081527f578adda73f5b431118629e4fc78f890d645ad2613a5260bddc23fa48065b940a9060200160405180910390a16006546040519081527fbaa019247a3ef5fbd10fa058e87b444fe8cd8f5d48494dc3e5756e509a34134990602001610676565b60005460ff161561086c5760405163d93c066560e01b815260040160405180910390fd5b600260015403611bdf57604051633ee5aeb560e01b815260040160405180910390fd5b6002600155565b611bee61199c565b60115460ff161561086c57611c01612428565b50565b611c5c83846001600160a01b031663a9059cbb8585604051602401611c2a9291906135c6565b604051602081830303815290604052915060e01b6020820180516001600160e01b0383818316178352505050506126b6565b505050565b60007f00000000000000000000000029c55eb48e578cc498f9ace4cbefba1b37e3374d6001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611cc1573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611ce59190613394565b905060006003600101547f00000000000000000000000004bee2b151c4e829a28f838e43722112d537c9b26001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611d4d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d719190613394565b611d7b91906134a9565b9050818111156102c3576000611d9183836133c3565b9050600b54811115611c5c577f00000000000000000000000029c55eb48e578cc498f9ace4cbefba1b37e3374d6001600160a01b031663d6b96050611dd4612373565b6007546040516001600160e01b031960e085901b168152611dfd92918691600190600401613475565b600060405180830381600087803b158015611e1757600080fd5b505af1158015611e2b573d6000803e3d6000fd5b50505050505050565b611e3c612710565b6000805460ff191690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b604051611e769190613130565b60405180910390a1565b604051632474521560e21b8152600481018390526001600160a01b0384811660248301528516906391d1485490604401602060405180830381865afa158015611ecd573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611ef1919061342b565b611f12578281604051637974da6f60e01b815260040161057b9291906135df565b50505050565b6040516001600160a01b038481166024830152838116604483015260648201839052611f129186918216906323b872dd90608401611c2a565b8060036001016000828254611f6691906134a9565b90915550611f80905082600754600454610dc091906104f3565b60078190556040519081527f98c7d87cc1242fd0802e2cc1c048bab3a03309350b0e8af0c06f6110b7aa16869060200160405180910390a15050565b611fc4611b98565b6000805460ff191660011790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a258611e693390565b6000611829610dbd84670de0b6b3a764000085612733565b600061201b611be6565b6040516370a0823160e01b815284906000906001600160a01b037f00000000000000000000000004bee2b151c4e829a28f838e43722112d537c9b216906370a082319061206c908890600401613130565b602060405180830381865afa158015612089573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906120ad9190613394565b905060008183106120bf575090508060015b82600360010160008282546120d491906134a9565b90915550506008546040516313452f7360e01b81526001600160a01b037f00000000000000000000000004bee2b151c4e829a28f838e43722112d537c9b216916313452f7391612130918a9188919087906001906004016133f8565b600060405180830381600087803b15801561214a57600080fd5b505af115801561215e573d6000803e3d6000fd5b505060035461217b92506001600160a01b03169050863086611f18565b612183611c61565b61218b611a65565b6040516370a0823160e01b81526000906001600160a01b037f00000000000000000000000004bee2b151c4e829a28f838e43722112d537c9b216906370a08231906121da908a90600401613130565b602060405180830381865afa1580156121f7573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061221b9190613394565b905060008111801561222e5750600c5481105b1561224c5760405163024f8afb60e51b815260040160405180910390fd5b866001600160a01b03167f5c16de4f8b59bd9caf0f49a545f25819a895ed223294290b408242e72a5942318560405161228791815260200190565b60405180910390a250919695505050505050565b60007f0000000000000000000000005bbc51eda8508f598e01eecd1ea129e741bcc25a6001600160a01b031663e5f3d3a56040516020016122fe906020808252600e908201526d464c4153485f4c4f414e5f46454560901b604082015260600190565b604051602081830303815290604052805190602001206040518263ffffffff1660e01b815260040161233291815260200190565b602060405180830381865afa15801561234f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906117659190613394565b60007f0000000000000000000000005bbc51eda8508f598e01eecd1ea129e741bcc25a6001600160a01b03166321f8a7216040516020016123b3906134d9565b604051602081830303815290604052805190602001206040518263ffffffff1660e01b81526004016123e791815260200190565b602060405180830381865afa158015612404573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061176591906134bc565b60035460405163e12f3a6160e01b81526000916001600160a01b031690819063e12f3a619061245b903090600401613130565b602060405180830381865afa158015612478573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061249c9190613394565b9150601054821061252a5760048054604051635569f64b60e11b815290916001600160a01b0384169163aad3ec96916124d99130918891016135c6565b6020604051808303816000875af11580156124f8573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061251c9190613394565b92506125288184611f51565b505b5090565b6000670de0b6b3a76400008161254485856133c3565b90508060000361255657509050611829565b60006301e133806125678884613603565b6125719190613630565b905061258661257f82612807565b84906118e1565b979650505050505050565b60008080600019848609848602925082811083820303915050806000036125c55750670de0b6b3a764000090049050610bcf565b670de0b6b3a764000081106125f757604051635173648d60e01b8152600481018690526024810185905260440161057b565b6000670de0b6b3a764000085870962040000818503049310909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b60007f0000000000000000000000005bbc51eda8508f598e01eecd1ea129e741bcc25a6001600160a01b031663e5f3d3a56040516020016122fe906020808252600b908201526a4c454e44494e475f46454560a81b604082015260600190565b6000611829610dbd83856133c3565b60006126cb6001600160a01b0384168361285d565b905080516000141580156126f05750808060200190518101906126ee919061342b565b155b15611c5c5782604051635274afe760e01b815260040161057b9190613130565b60005460ff1661086c57604051638dfc202b60e01b815260040160405180910390fd5b600080806000198587098587029250828110838203039150508060000361276d578382816127635761276361361a565b0492505050611829565b83811061279e57604051630c740aef60e31b815260048101879052602481018690526044810185905260640161057b565b60008486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091026000889003889004909101858311909403939093029303949094049190911702949350505050565b600081680736ea4425c11ac63081111561283757604051630d7b1d6560e11b81526004810184905260240161057b565b6714057b7ef767814f8102612855670de0b6b3a7640000820461286b565b949350505050565b6060611829838360006128c1565b600081680a688906bd8affffff81111561289b5760405163b3b6ba1f60e01b81526004810184905260240161057b565b60006128b3670de0b6b3a7640000604084901b613630565b9050612855610dbd8261295e565b6060814710156128e6573060405163cd78605960e01b815260040161057b9190613130565b600080856001600160a01b031684866040516129029190613652565b60006040518083038185875af1925050503d806000811461293f576040519150601f19603f3d011682016040523d82523d6000602084013e612944565b606091505b5091509150612954868383613069565b9695505050505050565b600160bf1b60ff60381b821615612a47576001603f1b82161561298a5768016a09e667f3bcc9090260401c5b6001603e1b8216156129a5576801306fe0a31b7152df0260401c5b6001603d1b8216156129c0576801172b83c7d517adce0260401c5b6001603c1b8216156129db5768010b5586cf9890f62a0260401c5b6001603b1b8216156129f6576801059b0d31585743ae0260401c5b6001603a1b821615612a1157680102c9a3e778060ee70260401c5b600160391b821615612a2c5768010163da9fb33356d80260401c5b600160381b821615612a4757680100b1afa5abcbed610260401c5b60ff60301b821615612b2b57600160371b821615612a6e5768010058c86da1c09ea20260401c5b600160361b821615612a89576801002c605e2e8cec500260401c5b600160351b821615612aa457680100162f3904051fa10260401c5b600160341b821615612abf576801000b175effdc76ba0260401c5b600160331b821615612ada57680100058ba01fb9f96d0260401c5b600160321b821615612af55768010002c5cc37da94920260401c5b600160311b821615612b10576801000162e525ee05470260401c5b600160301b821615612b2b5768010000b17255775c040260401c5b60ff60281b821615612c0f576001602f1b821615612b52576801000058b91b5bc9ae0260401c5b6001602e1b821615612b6d57680100002c5c89d5ec6d0260401c5b6001602d1b821615612b885768010000162e43f4f8310260401c5b6001602c1b821615612ba357680100000b1721bcfc9a0260401c5b6001602b1b821615612bbe5768010000058b90cf1e6e0260401c5b6001602a1b821615612bd9576801000002c5c863b73f0260401c5b600160291b821615612bf457680100000162e430e5a20260401c5b600160281b821615612c0f576801000000b1721835510260401c5b64ff00000000821615612cfc57648000000000821615612c3857680100000058b90c0b490260401c5b644000000000821615612c545768010000002c5c8601cc0260401c5b642000000000821615612c70576801000000162e42fff00260401c5b641000000000821615612c8c5768010000000b17217fbb0260401c5b640800000000821615612ca8576801000000058b90bfce0260401c5b640400000000821615612cc457680100000002c5c85fe30260401c5b640200000000821615612ce05768010000000162e42ff10260401c5b640100000000821615612cfc57680100000000b17217f80260401c5b63ff000000821615612de0576380000000821615612d235768010000000058b90bfc0260401c5b6340000000821615612d3e576801000000002c5c85fe0260401c5b6320000000821615612d5957680100000000162e42ff0260401c5b6310000000821615612d74576801000000000b17217f0260401c5b6308000000821615612d8f57680100000000058b90c00260401c5b6304000000821615612daa5768010000000002c5c8600260401c5b6302000000821615612dc5576801000000000162e4300260401c5b6301000000821615612de05768010000000000b172180260401c5b62ff0000821615612ebb5762800000821615612e05576801000000000058b90c0260401c5b62400000821615612e1f57680100000000002c5c860260401c5b62200000821615612e395768010000000000162e430260401c5b62100000821615612e5357680100000000000b17210260401c5b62080000821615612e6d5768010000000000058b910260401c5b62040000821615612e87576801000000000002c5c80260401c5b62020000821615612ea157680100000000000162e40260401c5b62010000821615612ebb576801000000000000b1720260401c5b61ff00821615612f8d57618000821615612ede57680100000000000058b90260401c5b614000821615612ef75768010000000000002c5d0260401c5b612000821615612f10576801000000000000162e0260401c5b611000821615612f295768010000000000000b170260401c5b610800821615612f42576801000000000000058c0260401c5b610400821615612f5b57680100000000000002c60260401c5b610200821615612f7457680100000000000001630260401c5b610100821615612f8d57680100000000000000b10260401c5b60ff821615613052576080821615612fae57680100000000000000590260401c5b6040821615612fc6576801000000000000002c0260401c5b6020821615612fde57680100000000000000160260401c5b6010821615612ff6576801000000000000000b0260401c5b600882161561300e57680100000000000000060260401c5b600482161561302657680100000000000000030260401c5b600282161561303c576001600160401b010260401c5b6001821615613052576001600160401b010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b60608261307e57613079826130bc565b611829565b815115801561309557506001600160a01b0384163b155b156130b55783604051639996b31560e01b815260040161057b9190613130565b5080611829565b8051156130cc5780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b6001600160a01b0381168114611c0157600080fd5b60006020828403121561310c57600080fd5b8135611829816130e5565b60006020828403121561312957600080fd5b5035919050565b6001600160a01b0391909116815260200190565b6000806040838503121561315757600080fd5b823591506020830135613169816130e5565b809150509250929050565b8015158114611c0157600080fd5b6000806040838503121561319557600080fd5b82356131a0816130e5565b9150602083013561316981613174565b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f191681016001600160401b03811182821017156131ee576131ee6131b0565b604052919050565b60006001600160401b0382111561320f5761320f6131b0565b50601f01601f191660200190565b6000806000806080858703121561323357600080fd5b843561323e816130e5565b9350602085013561324e816130e5565b92506040850135915060608501356001600160401b0381111561327057600080fd5b8501601f8101871361328157600080fd5b803561329461328f826131f6565b6131c6565b8181528860208385010111156132a957600080fd5b8160208401602083013760006020838301015280935050505092959194509250565b60005b838110156132e65781810151838201526020016132ce565b50506000910152565b600081518084526133078160208601602086016132cb565b601f01601f19169290920160200192915050565b60208152600061182960208301846132ef565b60008060006060848603121561334357600080fd5b833592506020840135613355816130e5565b91506040840135613365816130e5565b809150509250925092565b6000806040838503121561338357600080fd5b505080516020909101519092909150565b6000602082840312156133a657600080fd5b5051919050565b634e487b7160e01b600052601160045260246000fd5b81810381811115610bcf57610bcf6133ad565b600281106133f457634e487b7160e01b600052602160045260246000fd5b9052565b6001600160a01b03861681526020810185905260408101849052821515606082015260a0810161295460808301846133d6565b60006020828403121561343d57600080fd5b815161182981613174565b602080825260139082015272141493d513d0d3d317d11154149150d0551151606a1b604082015260600190565b6001600160a01b03851681526020810184905260408101839052608081016134a060608301846133d6565b95945050505050565b80820180821115610bcf57610bcf6133ad565b6000602082840312156134ce57600080fd5b8151611829816130e5565b6020808252600d908201526c2322a2afa1a7a62622a1aa27a960991b604082015260600190565b6001600160a01b03868116825285166020820152604081018490526060810183905260a060808201819052600090612586908301846132ef565b6000806040838503121561354d57600080fd5b825161355881613174565b60208401519092506001600160401b0381111561357457600080fd5b8301601f8101851361358557600080fd5b805161359361328f826131f6565b8181528660208385010111156135a857600080fd5b6135b98260208301602086016132cb565b8093505050509250929050565b6001600160a01b03929092168252602082015260400190565b6001600160a01b0383168152604060208201819052600090612855908301846132ef565b8082028115828204841417610bcf57610bcf6133ad565b634e487b7160e01b600052601260045260246000fd5b60008261364d57634e487b7160e01b600052601260045260246000fd5b500490565b600082516136648184602087016132cb565b919091019291505056fea26469706673582212202dc833096cc255ba12e407581c23b763105ea225c846effeea8446f0f15adbc164736f6c63430008180033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000005bbc51eda8508f598e01eecd1ea129e741bcc25a00000000000000000000000046b9f9fcdc73b37ad980b71b6ca1f5cc8eff259400000000000000000000000002f6eeb4e33bba64bcbea18bd149b9031c2735f7000000000000000000000000000000000000000000000002b5e3af16b18800000000000000000000000000000000000000000000000000000000000000000001
-----Decoded View---------------
Arg [0] : protocolGovernor_ (address): 0x5bbc51EdA8508F598E01eeCd1EA129E741bCc25a
Arg [1] : params (tuple): System.Collections.Generic.List`1[Nethereum.ABI.FunctionEncoding.ParameterOutput]
-----Encoded View---------------
5 Constructor Arguments found :
Arg [0] : 0000000000000000000000005bbc51eda8508f598e01eecd1ea129e741bcc25a
Arg [1] : 00000000000000000000000046b9f9fcdc73b37ad980b71b6ca1f5cc8eff2594
Arg [2] : 00000000000000000000000002f6eeb4e33bba64bcbea18bd149b9031c2735f7
Arg [3] : 000000000000000000000000000000000000000000000002b5e3af16b1880000
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000001
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 27 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|---|---|---|---|---|
BLAST | 100.00% | $1.01 | 22,160,995.9172 | $22,271,800.9 |
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.